These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26277941)

  • 1. Recent Progress in Two-Dimensional Oxide Photocatalysts for Water Splitting.
    Ida S; Ishihara T
    J Phys Chem Lett; 2014 Aug; 5(15):2533-42. PubMed ID: 26277941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals.
    Ida S; Takashiba A; Koga S; Hagiwara H; Ishihara T
    J Am Chem Soc; 2014 Feb; 136(5):1872-8. PubMed ID: 24393020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Doped Graphene for Photocatalytic Hydrogen Generation.
    Chang DW; Baek JB
    Chem Asian J; 2016 Apr; 11(8):1125-37. PubMed ID: 26762892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic reaction centers in two-dimensional titanium oxide crystals.
    Ida S; Kim N; Ertekin E; Takenaka S; Ishihara T
    J Am Chem Soc; 2015 Jan; 137(1):239-44. PubMed ID: 25479408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct imaging of light emission centers in two-dimensional crystals and their luminescence and photocatalytic properties.
    Ida S; Koga S; Daio T; Hagiwara H; Ishihara T
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13078-82. PubMed ID: 25303774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst.
    Yuan YJ; Wang F; Hu B; Lu HW; Yu ZT; Zou ZG
    Dalton Trans; 2015 Jun; 44(24):10997-1003. PubMed ID: 25989095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A perspective on two pathways of photocatalytic water splitting and their practical application systems.
    Ma Y; Lin L; Takata T; Hisatomi T; Domen K
    Phys Chem Chem Phys; 2023 Mar; 25(9):6586-6601. PubMed ID: 36789746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity.
    Zhang J; Qiao SZ; Qi L; Yu J
    Phys Chem Chem Phys; 2013 Aug; 15(29):12088-94. PubMed ID: 23598885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress.
    Huang ZF; Pan L; Zou JJ; Zhang X; Wang L
    Nanoscale; 2014 Nov; 6(23):14044-63. PubMed ID: 25325232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Surface Terminations of 2D Bi
    Wu S; Sun J; Li Q; Hood ZD; Yang S; Su T; Peng R; Wu Z; Sun W; Kent PRC; Jiang B; Chisholm MF
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20067-20074. PubMed ID: 32233392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective photoredox using graphene-based composite photocatalysts.
    Yang MQ; Xu YJ
    Phys Chem Chem Phys; 2013 Nov; 15(44):19102-18. PubMed ID: 24121632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure.
    Kato H; Asakura K; Kudo A
    J Am Chem Soc; 2003 Mar; 125(10):3082-9. PubMed ID: 12617675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-transfer mechanism in Pt/KTa(Zr)O(3) photocatalysts modified with porphyrinoids for water splitting.
    Hagiwara H; Inoue T; Kaneko K; Ishihara T
    Chemistry; 2009 Nov; 15(46):12862-70. PubMed ID: 19834939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.
    Liu M; Qiu X; Miyauchi M; Hashimoto K
    J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.
    Abe R; Sayama K; Sugihara H
    J Phys Chem B; 2005 Aug; 109(33):16052-61. PubMed ID: 16853039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.
    Wang X; Shen S; Jin S; Yang J; Li M; Wang X; Han H; Li C
    Phys Chem Chem Phys; 2013 Nov; 15(44):19380-6. PubMed ID: 24121670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.