BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 26277958)

  • 1. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
    Wu G; Li Z; Zhang X; Lu G
    J Phys Chem Lett; 2014 Aug; 5(15):2649-56. PubMed ID: 26277958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent Effects of Delocalization and Internal Conversion Tune Charge Separation at Regioregular Polythiophene-Fullerene Heterojunctions.
    Huix-Rotllant M; Tamura H; Burghardt I
    J Phys Chem Lett; 2015 May; 6(9):1702-8. PubMed ID: 26263337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonadiabatic Exciton and Charge Separation Dynamics at Interfaces of Zinc Phthalocyanine and Fullerene: Orientation Does Matter.
    Liu XY; Li ZW; Fang WH; Cui G
    J Phys Chem A; 2020 Sep; 124(37):7388-7398. PubMed ID: 32853524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Mauer R; Meister M; Kim TD; Lee KS; Baek NS; Laquai F
    J Am Chem Soc; 2011 Jun; 133(24):9469-79. PubMed ID: 21553906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the Role of Hot Charge-Transfer States in Molecular Aggregates via Nonadiabatic Dynamics.
    Fazzi D; Barbatti M; Thiel W
    J Am Chem Soc; 2016 Apr; 138(13):4502-11. PubMed ID: 26967020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband ultrafast photoluminescence spectroscopy resolves charge photogeneration via delocalized hot excitons in polymer:fullerene photovoltaic blends.
    Chen K; Barker AJ; Reish ME; Gordon KC; Hodgkiss JM
    J Am Chem Soc; 2013 Dec; 135(49):18502-12. PubMed ID: 24206394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends.
    Song Y; Clafton SN; Pensack RD; Kee TW; Scholes GD
    Nat Commun; 2014 Sep; 5():4933. PubMed ID: 25215959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Exciton Polarity in Charge-Transfer Polymer/PCBM Bulk Heterojunction Films.
    Rolczynski BS; Szarko JM; Son HJ; Yu L; Chen LX
    J Phys Chem Lett; 2014 Jun; 5(11):1856-63. PubMed ID: 26273865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonadiabatic simulations of exciton dissociation in poly-p-phenylenevinylene oligomers.
    Bedard-Hearn MJ; Sterpone F; Rossky PJ
    J Phys Chem A; 2010 Jul; 114(29):7661-70. PubMed ID: 20597491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of TiO₂ interfacial atomic layers on device performances and exciton dynamics in ZnO nanorod polymer solar cells.
    Jin MJ; Jo J; Kim JH; An KS; Jeong MS; Kim J; Yoo JW
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11649-56. PubMed ID: 24987829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells.
    Izquierdo MA; Broer R; Havenith RWA
    J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of solvent additives on morphology and excited-state dynamics in PCPDTBT:PCBM photovoltaic blends.
    Etzold F; Howard IA; Forler N; Cho DM; Meister M; Mangold H; Shu J; Hansen MR; Müllen K; Laquai F
    J Am Chem Soc; 2012 Jun; 134(25):10569-83. PubMed ID: 22612417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge separation pathways in a highly efficient polymer: fullerene solar cell material.
    Paraecattil AA; Banerji N
    J Am Chem Soc; 2014 Jan; 136(4):1472-82. PubMed ID: 24437495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer-Fullerene Bulk Heterojunctions.
    Niklas J; Beaupré S; Leclerc M; Xu T; Yu L; Sperlich A; Dyakonov V; Poluektov OG
    J Phys Chem B; 2015 Jun; 119(24):7407-16. PubMed ID: 25599127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between interchain interaction, exciton delocalization, and charge separation in low-bandgap copolymer blends.
    Guo Z; Lee D; Schaller RD; Zuo X; Lee B; Luo T; Gao H; Huang L
    J Am Chem Soc; 2014 Jul; 136(28):10024-32. PubMed ID: 24956140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton/Charge-Transfer Electronic Couplings in Organic Semiconductors.
    Difley S; Van Voorhis T
    J Chem Theory Comput; 2011 Mar; 7(3):594-601. PubMed ID: 26596293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton formation, relaxation, and decay in PCDTBT.
    Banerji N; Cowan S; Leclerc M; Vauthey E; Heeger AJ
    J Am Chem Soc; 2010 Dec; 132(49):17459-70. PubMed ID: 21087001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
    Heiber MC; Dhinojwala A
    J Chem Phys; 2012 Jul; 137(1):014903. PubMed ID: 22779679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Exciton Harvesting through Long-Range Energy Transfer.
    Wang Y; Ohkita H; Benten H; Ito S
    Chemphyschem; 2015 Apr; 16(6):1263-7. PubMed ID: 25598451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.