These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 26278044)
1. A gold nanoparticle-based fluorescence sensor for high sensitive and selective detection of thiols in living cells. Xu J; Yu H; Hu Y; Chen M; Shao S Biosens Bioelectron; 2016 Jan; 75():1-7. PubMed ID: 26278044 [TBL] [Abstract][Full Text] [Related]
2. A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters. Park KS; Kim MI; Woo MA; Park HG Biosens Bioelectron; 2013 Jul; 45():65-9. PubMed ID: 23454739 [TBL] [Abstract][Full Text] [Related]
3. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution. Huang CC; Chang HT Anal Chem; 2006 Dec; 78(24):8332-8. PubMed ID: 17165824 [TBL] [Abstract][Full Text] [Related]
4. Thiol reactive probe based on fluorescence resonance energy transfer between fluorescein and Au nanoparticles. Qi L; Song J; Wu FY; Wan YQ Acta Chim Slov; 2014; 61(1):73-9. PubMed ID: 24664329 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells. Yang P; Xu QZ; Jin SY; Zhao Y; Lu Y; Xu XW; Yu SH Chemistry; 2012 Jan; 18(4):1154-60. PubMed ID: 22190410 [TBL] [Abstract][Full Text] [Related]
6. Highly soluble PEGylated pyrene-gold nanoparticles dyads for sensitive turn-on fluorescent detection of biothiols. Xu JP; Jia L; Fang Y; Lv LP; Song ZG; Ji J Analyst; 2010 Sep; 135(9):2323-7. PubMed ID: 20603668 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent sensors based on [12]aneN3-modified BODIPY: Discrimination of different biological thiols in aqueous solution and living cells. Gao YG; Zhang Y; Shi YD; Hao HJ; Gong B; Lu ZL Bioorg Med Chem; 2016 Apr; 24(7):1550-9. PubMed ID: 26924215 [TBL] [Abstract][Full Text] [Related]
8. Gold-nanoparticle-based fluorescent "turn-on" sensor for selective and sensitive detection of dimethoate. Hung SH; Lee JY; Hu CC; Chiu TC Food Chem; 2018 Sep; 260():61-65. PubMed ID: 29699682 [TBL] [Abstract][Full Text] [Related]
9. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly. Wang S; Sun J; Gao F Analyst; 2015 Jun; 140(12):4001-6. PubMed ID: 25919909 [TBL] [Abstract][Full Text] [Related]
10. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Hung SY; Shih YC; Tseng WL Anal Chim Acta; 2015 Feb; 857():64-70. PubMed ID: 25604821 [TBL] [Abstract][Full Text] [Related]
11. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Yan X; Li H; Han X; Su X Biosens Bioelectron; 2015 Dec; 74():277-83. PubMed ID: 26143468 [TBL] [Abstract][Full Text] [Related]
12. Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Shang L; Yin J; Li J; Jin L; Dong S Biosens Bioelectron; 2009 Oct; 25(2):269-74. PubMed ID: 19683912 [TBL] [Abstract][Full Text] [Related]
13. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. Fu X; Lou T; Chen Z; Lin M; Feng W; Chen L ACS Appl Mater Interfaces; 2012 Feb; 4(2):1080-6. PubMed ID: 22264012 [TBL] [Abstract][Full Text] [Related]
14. Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration. Chen Y; Wan L; Zhang D; Bian Y; Jiang J Photochem Photobiol Sci; 2011 Jun; 10(6):1030-8. PubMed ID: 21384046 [TBL] [Abstract][Full Text] [Related]
15. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement. Li W; Dong Y; Wang X; Li H; Xu D Biosens Bioelectron; 2015 Apr; 66():43-9. PubMed ID: 25460880 [TBL] [Abstract][Full Text] [Related]
16. Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu(2+) complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion. Li F; Liu Y; Zhuang M; Zhang H; Liu X; Cui H ACS Appl Mater Interfaces; 2014 Oct; 6(20):18104-11. PubMed ID: 25275558 [TBL] [Abstract][Full Text] [Related]
17. Sensitive iodate sensor based on fluorescence quenching of gold nanocluster. Li R; Xu P; Fan J; Di J; Tu Y; Yan J Anal Chim Acta; 2014 May; 827():80-5. PubMed ID: 24832998 [TBL] [Abstract][Full Text] [Related]
18. Gold as a coordinator of an imidazole conjugated dye of BODIPY derivatives for the identification of simple mercaptans. Wang J; Lu JY; Chen QY Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120912. PubMed ID: 35074674 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive turn-on fluorescent detection of trace thiocyanate based on fluorescence resonance energy transfer. Song J; Wu FY; Wan YQ; Ma LH Talanta; 2015 Jan; 132():619-24. PubMed ID: 25476353 [TBL] [Abstract][Full Text] [Related]
20. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor. Liu CP; Wu TH; Liu CY; Lin SY Anal Chim Acta; 2014 Nov; 849():57-63. PubMed ID: 25300218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]