These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 26278047)
1. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models. Sereda V; Sawaya MR; Lednev IK J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047 [TBL] [Abstract][Full Text] [Related]
2. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Kurouski D; Van Duyne RP; Lednev IK Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229 [TBL] [Abstract][Full Text] [Related]
3. Structure and composition of insulin fibril surfaces probed by TERS. Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK J Am Chem Soc; 2012 Aug; 134(32):13323-9. PubMed ID: 22813355 [TBL] [Abstract][Full Text] [Related]
4. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. Deckert-Gaudig T; Kämmer E; Deckert V J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749 [TBL] [Abstract][Full Text] [Related]
5. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Measey TJ; Schweitzer-Stenner R J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804 [TBL] [Abstract][Full Text] [Related]
6. Structural variations in the cross-beta core of amyloid beta fibrils revealed by deep UV resonance Raman spectroscopy. Popova LA; Kodali R; Wetzel R; Lednev IK J Am Chem Soc; 2010 May; 132(18):6324-8. PubMed ID: 20405832 [TBL] [Abstract][Full Text] [Related]
7. Disulfide bridges remain intact while native insulin converts into amyloid fibrils. Kurouski D; Washington J; Ozbil M; Prabhakar R; Shekhtman A; Lednev IK PLoS One; 2012; 7(6):e36989. PubMed ID: 22675475 [TBL] [Abstract][Full Text] [Related]
8. Decoding vibrational states of Concanavalin A amyloid fibrils. Piccirilli F; Schirò G; Vetri V; Lupi S; Perucchi A; Militello V Biophys Chem; 2015 Apr; 199():17-24. PubMed ID: 25776525 [TBL] [Abstract][Full Text] [Related]
9. Absolute structural constraints on amyloid fibrils from solid-state NMR spectroscopy of partially oriented samples. Oyler NA; Tycko R J Am Chem Soc; 2004 Apr; 126(14):4478-9. PubMed ID: 15070340 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy. vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953 [TBL] [Abstract][Full Text] [Related]
11. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils. Sikirzhytski V; Topilina NI; Higashiya S; Welch JT; Lednev IK J Am Chem Soc; 2008 May; 130(18):5852-3. PubMed ID: 18410104 [TBL] [Abstract][Full Text] [Related]
12. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Jayamani J; Shanmugam G Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923 [TBL] [Abstract][Full Text] [Related]
14. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
15. Structural model of the amyloid fibril formed by beta(2)-microglobulin #21-31 fragment based on vibrational spectroscopy. Hiramatsu H; Goto Y; Naiki H; Kitagawa T J Am Chem Soc; 2005 Jun; 127(22):7988-9. PubMed ID: 15926803 [TBL] [Abstract][Full Text] [Related]
16. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins. Meredith SC Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927 [TBL] [Abstract][Full Text] [Related]
17. Structural models of amyloid-like fibrils. Nelson R; Eisenberg D Adv Protein Chem; 2006; 73():235-82. PubMed ID: 17190616 [TBL] [Abstract][Full Text] [Related]
18. Structural and sequence analysis of the human γD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. Moran SD; Decatur SM; Zanni MT J Am Chem Soc; 2012 Nov; 134(44):18410-6. PubMed ID: 23082813 [TBL] [Abstract][Full Text] [Related]
19. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391 [TBL] [Abstract][Full Text] [Related]