These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26278095)
1. Unveiling Two Electron-Transport Modes in Oxygen-Deficient TiO2 Nanowires and Their Influence on Photoelectrochemical Operation. Chen H; Wei Z; Yan K; Bai Y; Yang S J Phys Chem Lett; 2014 Aug; 5(16):2890-6. PubMed ID: 26278095 [TBL] [Abstract][Full Text] [Related]
2. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. Hernández S; Cauda V; Chiodoni A; Dallorto S; Sacco A; Hidalgo D; Celasco E; Pirri CF ACS Appl Mater Interfaces; 2014 Aug; 6(15):12153-67. PubMed ID: 24983821 [TBL] [Abstract][Full Text] [Related]
3. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting. Chen H; Wei Z; Yan K; Bai Y; Zhu Z; Zhang T; Yang S Small; 2014 Nov; 10(22):4760-9. PubMed ID: 24990800 [TBL] [Abstract][Full Text] [Related]
4. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting. Meng M; Wu X; Zhu X; Zhu X; Chu PK ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166 [TBL] [Abstract][Full Text] [Related]
5. Exploiting defects in TiO Yew R; Karuturi SK; Liu J; Tan HH; Wu Y; Jagadish C Opt Express; 2019 Jan; 27(2):761-773. PubMed ID: 30696157 [TBL] [Abstract][Full Text] [Related]
6. Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. Yang W; Yu Y; Starr MB; Yin X; Li Z; Kvit A; Wang S; Zhao P; Wang X Nano Lett; 2015 Nov; 15(11):7574-80. PubMed ID: 26492362 [TBL] [Abstract][Full Text] [Related]
7. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Hernández S; Hidalgo D; Sacco A; Chiodoni A; Lamberti A; Cauda V; Tresso E; Saracco G Phys Chem Chem Phys; 2015 Mar; 17(12):7775-86. PubMed ID: 25715190 [TBL] [Abstract][Full Text] [Related]
8. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells. Wang Y; Tang J; Zhou T; Da P; Li J; Kong B; Yang Z; Zheng G Small; 2014 Dec; 10(23):4967-74. PubMed ID: 25044916 [TBL] [Abstract][Full Text] [Related]
9. Unveiling the Effects of Nanostructures and Core Materials on Charge-Transport Dynamics in Heterojunction Electrodes for Photoelectrochemical Water Splitting. Kim K; Yang J; Moon JH ACS Appl Mater Interfaces; 2020 May; 12(19):21894-21902. PubMed ID: 32366085 [TBL] [Abstract][Full Text] [Related]
10. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes. Wang F; Seo JH; Li Z; Kvit AV; Ma Z; Wang X ACS Appl Mater Interfaces; 2014 Jan; 6(2):1288-93. PubMed ID: 24383705 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO Wu F; Yu Y; Yang H; German LN; Li Z; Chen J; Yang W; Huang L; Shi W; Wang L; Wang X Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558165 [TBL] [Abstract][Full Text] [Related]
12. Photoelectrochemical Antibacterial Platform Based on Rationally Designed Black TiO Zhang M; Wu N; Yang J; Zhang Z ACS Appl Bio Mater; 2022 Mar; 5(3):1341-1347. PubMed ID: 35258936 [TBL] [Abstract][Full Text] [Related]
13. Hydrogenated TiO Meng M; Zhou S; Yang L; Gan Z; Liu K; Tian F; Zhu Y; Li C; Liu W; Yuan H; Zhang Y Nanotechnology; 2018 Apr; 29(15):155401. PubMed ID: 29372889 [TBL] [Abstract][Full Text] [Related]
14. Enhanced photocatalytic performance at a Au/N-TiO₂ hollow nanowire array by a combination of light scattering and reduced recombination. Sudhagar P; Devadoss A; Song T; Lakshmipathiraj P; Han H; Lysak VV; Terashima C; Nakata K; Fujishima A; Paik U; Kang YS Phys Chem Chem Phys; 2014 Sep; 16(33):17748-55. PubMed ID: 25030078 [TBL] [Abstract][Full Text] [Related]
15. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting. Cho IS; Logar M; Lee CH; Cai L; Prinz FB; Zheng X Nano Lett; 2014 Jan; 14(1):24-31. PubMed ID: 24295287 [TBL] [Abstract][Full Text] [Related]
16. Modification of 1D TiO Tao JJ; Ma HP; Yuan KP; Gu Y; Lian JW; Li XX; Huang W; Nolan M; Lu HL; Zhang DW Nanoscale; 2020 Apr; 12(13):7159-7173. PubMed ID: 32193525 [TBL] [Abstract][Full Text] [Related]
17. Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO Pesci FM; Wang G; Klug DR; Li Y; Cowan AJ J Phys Chem C Nanomater Interfaces; 2013 Dec; 117(48):25837-25844. PubMed ID: 24376902 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Photoelectrochemical Water-Splitting Property on TiO Zhang T; Lin P; Wei N; Wang D ACS Appl Mater Interfaces; 2020 Apr; 12(17):20110-20118. PubMed ID: 32255600 [TBL] [Abstract][Full Text] [Related]
19. Electron transport dynamics in TiO(2) films deposited on ti foils for back-illuminated dye-sensitized solar cells. Chen LC; Hsieh CT; Lee YL; Teng H ACS Appl Mater Interfaces; 2013 Nov; 5(22):11958-64. PubMed ID: 24147618 [TBL] [Abstract][Full Text] [Related]
20. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors. Wang G; Wang Q; Lu W; Li J J Phys Chem B; 2006 Nov; 110(43):22029-34. PubMed ID: 17064173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]