These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26278133)
21. Saffman-Taylor streamers: mutual finger interaction in spark formation. Luque A; Brau F; Ebert U Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016206. PubMed ID: 18764034 [TBL] [Abstract][Full Text] [Related]
22. Multicomponent model of deformation and detachment of a biofilm under fluid flow. Tierra G; Pavissich JP; Nerenberg R; Xu Z; Alber MS J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25808342 [TBL] [Abstract][Full Text] [Related]
23. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms. Shin S; Ahmed I; Hwang J; Seo Y; Lee E; Choi J; Moon S; Hong JW Anal Sci; 2016; 32(1):67-73. PubMed ID: 26753708 [TBL] [Abstract][Full Text] [Related]
24. A novel microfluidic device for the in situ optical and mechanical analysis of bacterial biofilms. Mosier AP; Kaloyeros AE; Cady NC J Microbiol Methods; 2012 Oct; 91(1):198-204. PubMed ID: 22796059 [TBL] [Abstract][Full Text] [Related]
25. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system. Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336 [TBL] [Abstract][Full Text] [Related]
26. Biofilm streamer growth dynamics in various microfluidic channels. Zhang J; Dong F; Liu S; Zhang D; Wang X Can J Microbiol; 2022 May; 68(5):367-375. PubMed ID: 35100043 [TBL] [Abstract][Full Text] [Related]
27. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674 [TBL] [Abstract][Full Text] [Related]
28. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Song B; Leff LG Microbiol Res; 2006; 161(4):355-61. PubMed ID: 16517137 [TBL] [Abstract][Full Text] [Related]
29. Timescales and Frequencies of Reversible and Irreversible Adhesion Events of Single Bacterial Cells. Hoffman MD; Zucker LI; Brown PJ; Kysela DT; Brun YV; Jacobson SC Anal Chem; 2015 Dec; 87(24):12032-9. PubMed ID: 26496389 [TBL] [Abstract][Full Text] [Related]
30. Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM Biotechnol Bioeng; 1998 Mar; 57(5):536-44. PubMed ID: 10099232 [TBL] [Abstract][Full Text] [Related]
31. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Lee JH; Kaplan JB; Lee WY Biomed Microdevices; 2008 Aug; 10(4):489-98. PubMed ID: 18204904 [TBL] [Abstract][Full Text] [Related]
32. Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows. Lee SH; Secchi E; Kang PK Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2204466120. PubMed ID: 36989304 [TBL] [Abstract][Full Text] [Related]
33. Penetration of antibody-opsonized cells by the membrane attack complex of complement promotes Ca(2+) influx and induces streamers. Beum PV; Lindorfer MA; Peek EM; Stukenberg PT; de Weers M; Beurskens FJ; Parren PW; van de Winkel JG; Taylor RP Eur J Immunol; 2011 Aug; 41(8):2436-46. PubMed ID: 21674476 [TBL] [Abstract][Full Text] [Related]
34. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms. Simões M; Simoes LC; Pereira MO; Vieira MJ Biofouling; 2008; 24(5):339-49. PubMed ID: 18576180 [TBL] [Abstract][Full Text] [Related]
35. Laminar flow around corners triggers the formation of biofilm streamers. Rusconi R; Lecuyer S; Guglielmini L; Stone HA J R Soc Interface; 2010 Sep; 7(50):1293-9. PubMed ID: 20356880 [TBL] [Abstract][Full Text] [Related]
36. Microfluidic bioanalytical flow cells for biofilm studies: a review. Pousti M; Zarabadi MP; Abbaszadeh Amirdehi M; Paquet-Mercier F; Greener J Analyst; 2018 Dec; 144(1):68-86. PubMed ID: 30394455 [TBL] [Abstract][Full Text] [Related]
37. In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. Quilès F; Saadi S; Francius G; Bacharouche J; Humbert F Biochim Biophys Acta; 2016 Jan; 1858(1):75-84. PubMed ID: 26525662 [TBL] [Abstract][Full Text] [Related]
38. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. Bahar O; De La Fuente L; Burdman S FEMS Microbiol Lett; 2010 Nov; 312(1):33-9. PubMed ID: 20807236 [TBL] [Abstract][Full Text] [Related]
39. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Möhle RB; Langemann T; Haesner M; Augustin W; Scholl S; Neu TR; Hempel DC; Horn H Biotechnol Bioeng; 2007 Nov; 98(4):747-55. PubMed ID: 17421046 [TBL] [Abstract][Full Text] [Related]
40. Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities. Hallberg KB; Coupland K; Kimura S; Johnson DB Appl Environ Microbiol; 2006 Mar; 72(3):2022-30. PubMed ID: 16517651 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]