These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26278237)

  • 1. Energy-Driven Kinetic Monte Carlo Method and Its Application in Fullerene Coalescence.
    Ding F; Yakobson BI
    J Phys Chem Lett; 2014 Sep; 5(17):2922-6. PubMed ID: 26278237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of melting times and critical droplet in kinetic Monte Carlo and molecular dynamics.
    Lemarchand CA
    J Chem Phys; 2013 Jan; 138(3):034506. PubMed ID: 23343284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulations of gas diffusion in polystyrene-C60 fullerene nanocomposites using trajectory extending kinetic Monte Carlo method.
    Hanson B; Pryamitsyn V; Ganesan V
    J Phys Chem B; 2012 Jan; 116(1):95-103. PubMed ID: 22126673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water.
    Nakashima N; Tanaka Y; Tomonari Y; Murakami H; Kataura H; Sakaue T; Yoshikawa K
    J Phys Chem B; 2005 Jul; 109(27):13076-82. PubMed ID: 16852626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of domains and grain boundaries in graphene: a kinetic Monte Carlo simulation.
    Zhuang J; Zhao R; Dong J; Yan T; Ding F
    Phys Chem Chem Phys; 2016 Jan; 18(4):2932-9. PubMed ID: 26789116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations.
    Okamoto Y
    J Mol Graph Model; 2004 May; 22(5):425-39. PubMed ID: 15099838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A local superbasin kinetic Monte Carlo method.
    Fichthorn KA; Lin Y
    J Chem Phys; 2013 Apr; 138(16):164104. PubMed ID: 23635108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Generalized Born Models for Monte Carlo Simulations.
    Michel J; Taylor RD; Essex JW
    J Chem Theory Comput; 2006 May; 2(3):732-9. PubMed ID: 26626678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.
    Chatterjee A; Voter AF
    J Chem Phys; 2010 May; 132(19):194101. PubMed ID: 20499945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation.
    Agnihotri S; Mota JP; Rostam-Abadi M; Rood MJ
    Langmuir; 2005 Feb; 21(3):896-904. PubMed ID: 15667165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Monte Carlo simulation in mixtures.
    Rutkai G; Kristóf T
    J Chem Phys; 2010 Mar; 132(10):104107. PubMed ID: 20232947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple intra-tube junctions in the inner tube of peapod-derived double walled carbon nanotubes: theoretical study and experimental evidence.
    Xu Z; Li H; Fujisawa K; Kim YA; Endo M; Ding F
    Nanoscale; 2012 Jan; 4(1):130-6. PubMed ID: 22033549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo temperature basin paving with effective fragment potential: an efficient and fast method for finding low-energy structures of water clusters (H2O)20 and (H2O)25.
    Shanker S; Bandyopadhyay P
    J Phys Chem A; 2011 Oct; 115(42):11866-75. PubMed ID: 21928813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling of non-Markovian Monte Carlo wave-function methods.
    Piilo J; Maniscalco S; Messina A; Petruccione F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056701. PubMed ID: 16089685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coalescence phenomena in 1D silver nanostructures.
    Gutiérrez-Wing C; Pérez-Alvarez M; Mondragón-Galicia G; Arenas-Alatorre J; Gutiérrez-Wing MT; Henk MC; Negulescu II; Rusch KA
    J Phys Condens Matter; 2009 Jul; 21(29):295301. PubMed ID: 21828529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.
    Schaefer C; Jansen AP
    J Chem Phys; 2013 Feb; 138(5):054102. PubMed ID: 23406093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coalescence of single-walled carbon nanotubes.
    Terrones M; Terrones H; Banhart F; Charlier J; Ajayan PM
    Science; 2000 May; 288(5469):1226-9. PubMed ID: 10817994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational space exploration of Met- and Leu-enkephalin using the MOLS method, molecular dynamics, and Monte Carlo simulation--a comparative study.
    Ramya L; Gautham N
    Biopolymers; 2012 Mar; 97(3):165-76. PubMed ID: 21953081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.