BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26278239)

  • 1. Optical Sensitivity Gain in Silica-Coated Plasmonic Nanostructures.
    Floris F; Figus C; Fornasari L; Patrini M; Pellacani P; Marchesini G; Valsesia A; Artizzu F; Marongiu D; Saba M; Mura A; Bongiovanni G; Marabelli F; Quochi F
    J Phys Chem Lett; 2014 Sep; 5(17):2935-40. PubMed ID: 26278239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergic combination of the sol-gel method with dip coating for plasmonic devices.
    Figus C; Patrini M; Floris F; Fornasari L; Pellacani P; Marchesini G; Valsesia A; Artizzu F; Marongiu D; Saba M; Marabelli F; Mura A; Bongiovanni G; Quochi F
    Beilstein J Nanotechnol; 2015; 6():500-7. PubMed ID: 25821692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silica-stabilized gold island films for transmission localized surface plasmon sensing.
    Ruach-Nir I; Bendikov TA; Doron-Mor I; Barkay Z; Vaskevich A; Rubinstein I
    J Am Chem Soc; 2007 Jan; 129(1):84-92. PubMed ID: 17199286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance.
    Mahmood R; Johnson MB; Hillier AC
    Anal Chem; 2019 Jul; 91(13):8350-8357. PubMed ID: 31140785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer.
    König TA; Ledin PA; Kerszulis J; Mahmoud MA; El-Sayed MA; Reynolds JR; Tsukruk VV
    ACS Nano; 2014 Jun; 8(6):6182-92. PubMed ID: 24870253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short and long range surface plasmon polariton waveguides for xylene sensing.
    Brigo L; Gazzola E; Cittadini M; Zilio P; Zacco G; Romanato F; Martucci A; Guglielmi M; Brusatin G
    Nanotechnology; 2013 Apr; 24(15):155502. PubMed ID: 23518462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of saline-stable, silica-coated triangular silver nanoplates of use for optical sensing.
    Brandon MP; Ledwith DM; Kelly JM
    J Colloid Interface Sci; 2014 Feb; 415():77-84. PubMed ID: 24267332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive surface plasmon resonance enabled by templated periodic arrays of gold nanodonuts.
    Dou X; Lin YC; Choi B; Wu K; Jiang P
    Nanotechnology; 2016 May; 27(19):195601. PubMed ID: 27040938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors.
    Dong P; Lin Y; Deng J; Di J
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2392-9. PubMed ID: 23477284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing using localised surface plasmon resonance sensors.
    Szunerits S; Boukherroub R
    Chem Commun (Camb); 2012 Sep; 48(72):8999-9010. PubMed ID: 22806135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of metal nanoparticle films on glass surfaces using ultrathin silica coating.
    Chaikin Y; Kedem O; Raz J; Vaskevich A; Rubinstein I
    Anal Chem; 2013 Nov; 85(21):10022-7. PubMed ID: 24107238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Responses of Localized and Extended Modes in a Mesoporous Layer on Plasmonic Array to Isopropanol Vapor.
    Murai S; Cabello-Olmo E; Kamakura R; Calvo ME; Lozano G; Atsumi T; Míguez H; Tanaka K
    J Phys Chem C Nanomater Interfaces; 2020 Mar; 124(10):5772-5779. PubMed ID: 32194885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanorods as nanotransducers to monitor the growth and swelling of ultrathin polymer films.
    Tian L; Fei M; Kattumenu R; Abbas A; Singamaneni S
    Nanotechnology; 2012 Jun; 23(25):255502. PubMed ID: 22653038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-layer-deposited silver and dielectric nanostructures for plasmonic enhancement of Raman scattering from nanoscale ultrathin films.
    Ko CT; Yang PS; Han YY; Wang WC; Huang JJ; Lee YH; Tsai YJ; Shieh J; Chen MJ
    Nanotechnology; 2015 Jul; 26(26):265702. PubMed ID: 26057412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
    Gallinet B; Martin OJ
    ACS Nano; 2013 Aug; 7(8):6978-87. PubMed ID: 23869857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor.
    Sannomiya T; Balmer TE; Hafner C; Heuberger M; Vörös J
    Rev Sci Instrum; 2010 May; 81(5):053102. PubMed ID: 20515119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable light absorbance by exciting the plasmonic gap mode for refractive index sensing.
    Qin L; Wu S; Deng JH; Li L; Li X
    Opt Lett; 2018 Apr; 43(7):1427-1430. PubMed ID: 29600996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic layers based on Au-nanoparticle-doped TiO2 for optoelectronics: structural and optical properties.
    Pedrueza E; Sancho-Parramon J; Bosch S; Valdés JL; Martinez-Pastor JP
    Nanotechnology; 2013 Feb; 24(6):065202. PubMed ID: 23339892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.