These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26278253)

  • 1. Molecular Theory for Electrokinetic Transport in pH-Regulated Nanochannels.
    Kong X; Jiang J; Lu D; Liu Z; Wu J
    J Phys Chem Lett; 2014 Sep; 5(17):3015-20. PubMed ID: 26278253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid theoretical method for predicting electrokinetic energy conversion in nanochannels.
    Hu X; Nan Y; Kong X; Lu D; Wu J
    Phys Chem Chem Phys; 2020 Apr; 22(16):9110-9116. PubMed ID: 32301460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of surface charge regulation on conductivity in fluidic nanochannels.
    Fleharty ME; van Swol F; Petsev DN
    J Colloid Interface Sci; 2014 Feb; 416():105-11. PubMed ID: 24370409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic transport through nanochannels.
    Movahed S; Li D
    Electrophoresis; 2011 Jun; 32(11):1259-67. PubMed ID: 21538982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic transport and separations in fluidic nanochannels.
    Yuan Z; Garcia AL; Lopez GP; Petsev DN
    Electrophoresis; 2007 Feb; 28(4):595-610. PubMed ID: 17304495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction.
    Kim YW; Netz RR
    J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of electrostatic correlations on electrokinetic phenomena.
    Storey BD; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056303. PubMed ID: 23214872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale.
    Deng M; Li Z; Borodin O; Karniadakis GE
    J Chem Phys; 2016 Oct; 145(14):144109. PubMed ID: 27782504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion size and image effect on electrokinetic flows.
    Liu Y; Liu M; Lau WM; Yang J
    Langmuir; 2008 Mar; 24(6):2884-91. PubMed ID: 18237199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic flow-induced currents in silica nanofluidic channels.
    Choi YS; Kim SJ
    J Colloid Interface Sci; 2009 May; 333(2):672-8. PubMed ID: 19251271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations.
    Obliger A; Duvail M; Jardat M; Coelho D; Békri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013019. PubMed ID: 23944561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.
    Gillespie D; Khair AS; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic flow and electric current in a fibrous porous medium.
    Wu YY; Keh HJ
    J Phys Chem B; 2012 Mar; 116(11):3578-86. PubMed ID: 22369485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic ion transport and fluid flow in a pH-regulated polymer-grafted nanochannel filled with power-law fluid.
    Barman B; Kumar D; Gopmandal PP; Ohshima H
    Soft Matter; 2020 Aug; 16(29):6862-6874. PubMed ID: 32638819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.
    Alizadeh A; Wang JK; Pooyan S; Mirbozorgi SA; Wang M
    J Colloid Interface Sci; 2013 Oct; 407():546-55. PubMed ID: 23859813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of atomistic physics on electro-osmotic flow: an analysis based on density functional theory.
    Nilson RH; Griffiths SK
    J Chem Phys; 2006 Oct; 125(16):164510. PubMed ID: 17092108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels.
    Kim D; Darve E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion Transport in Multi-Nanochannels Regulated by pH and Ion Concentration.
    Liu S; Zhang X; Yang Y; Hu N
    Anal Chem; 2024 Apr; 96(14):5648-5657. PubMed ID: 38556994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.