BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26278347)

  • 1. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.
    Rahmani F; Seifi S; Anbaran HT; Ghasemi F
    Appl Radiat Isot; 2015 Dec; 106():45-8. PubMed ID: 26278347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of thermal neutron beam based on an electron linear accelerator for BNCT.
    Zolfaghari M; Sedaghatizadeh M
    Appl Radiat Isot; 2016 Dec; 118():149-153. PubMed ID: 27640175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
    Taheri A; Pazirandeh A
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.
    Halfon S; Arenshtam A; Kijel D; Paul M; Weissman L; Berkovits D; Eliyahu I; Feinberg G; Kreisel A; Mardor I; Shimel G; Shor A; Silverman I; Tessler M
    Appl Radiat Isot; 2015 Dec; 106():57-62. PubMed ID: 26300076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the photoneutron target geometry for e-accelerator based BNCT.
    Chegeni N; Pur SB; Razmjoo S; Hoseini SK
    Electron Physician; 2017 Jun; 9(6):4590-4596. PubMed ID: 28848635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and simulation of an optimized e-linac based neutron source for BNCT research.
    Durisi E; Alikaniotis K; Borla O; Bragato F; Costa M; Giannini G; Monti V; Visca L; Vivaldo G; Zanini A
    Appl Radiat Isot; 2015 Dec; 106():63-7. PubMed ID: 26315098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation-based design of an electron-linear accelerator-based neutron source for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2020 Aug; 162():109203. PubMed ID: 32501225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT).
    Capoulat ME; Minsky DM; Kreiner AJ
    Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals.
    Li G; Jiang W; Zhang L; Chen W; Li Q
    Front Public Health; 2021; 9():642561. PubMed ID: 33777888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits.
    Hervé M; Sauzet N; Santos D
    Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerator-based epithermal neutron beam design for neutron capture therapy.
    Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE
    Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy.
    Lee CL; Zhou XL; Kudchadker RJ; Harmon F; Harker YD
    Med Phys; 2000 Jan; 27(1):192-202. PubMed ID: 10659757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT.
    Burlon AA; Kreiner AJ; White SM; Blackburn BW; Gierga DP; Yanch JC
    Med Phys; 2001 May; 28(5):796-803. PubMed ID: 11393475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.
    Hiraga F
    Appl Radiat Isot; 2015 Dec; 106():84-7. PubMed ID: 26235186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT.
    Kasesaz Y; Rahmani F; Khalafi H
    Appl Radiat Isot; 2015 Dec; 106():34-7. PubMed ID: 26298435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility study of using laser-generated neutron beam for BNCT.
    Kasesaz Y; Rahmani F; Khalafi H
    Appl Radiat Isot; 2015 Sep; 103():173-6. PubMed ID: 26115204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.