These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26278381)

  • 1. Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
    Zhao XG; Liu P; Song YC; Zhang AP; Chen XM; Zhou JP
    Phys Chem Chem Phys; 2015 Sep; 17(35):23132-9. PubMed ID: 26278381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-intrinsic colossal permittivity in Nb and In co-doped rutile TiO2 nanoceramics synthesized through a oxalate chemical-solution route combined with spark plasma sintering.
    Han H; Dufour P; Mhin S; Ryu JH; Tenailleau C; Guillemet-Fritsch S
    Phys Chem Chem Phys; 2015 Jul; 17(26):16864-75. PubMed ID: 26058428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
    Zhao XG; Liu P; Song YC; Zhang AP; Chen XM; Zhou JP
    Phys Chem Chem Phys; 2015 Oct; 17(37):24475. PubMed ID: 26335163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retraction: Origin of colossal permittivity in (In1/2Nb1/2)TiO2via broadband dielectric spectroscopy.
    Zhao XG; Liu P; Song YC; Zhang AP; Chen XM; Zhou JP
    Phys Chem Chem Phys; 2016 Oct; 18(37):26310. PubMed ID: 27604689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of colossal dielectric permittivity of rutile Ti₀.₉In₀.₀₅Nb₀.₀₅O₂: single crystal and polycrystalline.
    Song Y; Wang X; Sui Y; Liu Z; Zhang Y; Zhan H; Song B; Liu Z; Lv Z; Tao L; Tang J
    Sci Rep; 2016 Feb; 6():21478. PubMed ID: 26869187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.
    Dong W; Hu W; Berlie A; Lau K; Chen H; Withers RL; Liu Y
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25321-5. PubMed ID: 26512874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colossal Permittivity Characteristics of (Nb, Si) Co-Doped TiO
    Kotb HM; Alshoaibi A; Mazher J; Shaalan NM; Ahmad MM
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Primary Origin of Excellent Dielectric Properties of (Co, Nb) Co-Doped TiO
    Nachaithong T; Chanlek N; Moontragoon P; Thongbai P
    Molecules; 2021 May; 26(11):. PubMed ID: 34072170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colossal permittivity behavior and its origin in rutile (Mg
    Dong W; Chen D; Hu W; Frankcombe TJ; Chen H; Zhou C; Fu Z; Wei X; Xu Z; Liu Z; Li Y; Liu Y
    Sci Rep; 2017 Aug; 7(1):9950. PubMed ID: 28855617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colossal dielectric permittivity in Co-doped ZnO ceramics prepared by a pressure-less sintering method.
    Pessoni HVS; Banerjee P; Franco A
    Phys Chem Chem Phys; 2018 Nov; 20(45):28712-28719. PubMed ID: 30411101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously Achieving Colossal Permittivity, Ultralow Dielectric Loss Tangent, and High Insulation Resistivity in Er-Doped SrTiO
    Zhang X; Pu Y; Zhang L; Zhang J; Ning Y; Shang Y; Lu X; Zhang X
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48821-48832. PubMed ID: 36266254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Giant Dielectric Properties of Cr
    Tuichai W; Danwittayakul S; Chanlek N; Takesada M; Pengpad A; Srepusharawoot P; Thongbai P
    ACS Omega; 2021 Jan; 6(3):1901-1910. PubMed ID: 33521430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe
    Nachaithong T; Moontragoon P; Chanlek N; Thongbai P
    RSC Adv; 2020 Jun; 10(42):24784-24794. PubMed ID: 35517467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO
    Tsuji K; Han H; Guillemet-Fritsch S; Randall CA
    Phys Chem Chem Phys; 2017 Mar; 19(12):8568-8574. PubMed ID: 28289735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of enhanced performance in Zr
    Mingmuang Y; Chanlek N; Takesada M; Harnchana V; Jarernboon W; Moontragoon P; Srepusharawoot P; Swatsitang E; Thongbai P
    Sci Rep; 2024 Oct; 14(1):23406. PubMed ID: 39379422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 'mixed' dielectric response in langasite Ba
    Rathore SS; Nathawat R; Vitta S
    Phys Chem Chem Phys; 2021 Jan; 23(1):554-562. PubMed ID: 33325470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics.
    Zhao C; Wu J
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3680-3688. PubMed ID: 29328630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced dielectric loss in new colossal permittivity (Pr, Nb)TiO
    Liu Z; Zhao C; Wu B; Wu J
    Phys Chem Chem Phys; 2018 Aug; 20(34):21814-21821. PubMed ID: 30128467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of colossal dielectric response in (In + Nb) co-doped TiO
    Ke S; Li T; Ye M; Lin P; Yuan W; Zeng X; Chen L; Huang H
    Sci Rep; 2017 Aug; 7(1):10144. PubMed ID: 28860639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic Enhancement of Dielectric Permittivity in (Nb + In) co-doped TiO
    Kawarasaki M; Tanabe K; Terasaki I; Fujii Y; Taniguchi H
    Sci Rep; 2017 Jul; 7(1):5351. PubMed ID: 28706304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.