These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 26278735)
21. Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer. Shafian S; Jang Y; Kim K Opt Express; 2015 Jul; 23(15):A936-46. PubMed ID: 26367693 [TBL] [Abstract][Full Text] [Related]
22. Mechanism and control of the structural evolution of a polymer solar cell from a bulk heterojunction to a thermally unstable hierarchical structure. Chen CY; Tsao CS; Huang YC; Liu HW; Chiu WY; Chuang CM; Jeng US; Su CJ; Wu WR; Su WF; Wang L Nanoscale; 2013 Aug; 5(16):7629-38. PubMed ID: 23846751 [TBL] [Abstract][Full Text] [Related]
23. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells. Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501 [TBL] [Abstract][Full Text] [Related]
24. Time-resolved neutron reflectometry and photovoltaic device studies on sequentially deposited PCDTBT-fullerene layers. Clulow AJ; Tao C; Lee KH; Velusamy M; McEwan JA; Shaw PE; Yamada NL; James M; Burn PL; Gentle IR; Meredith P Langmuir; 2014 Sep; 30(38):11474-84. PubMed ID: 25222029 [TBL] [Abstract][Full Text] [Related]
25. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells. Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773 [TBL] [Abstract][Full Text] [Related]
26. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells. Huh YH; Bae IG; Jeon HG; Park B Opt Express; 2016 Oct; 24(22):A1321-A1335. PubMed ID: 27828519 [TBL] [Abstract][Full Text] [Related]
27. Poly(3-hexylthiophene) (P3HT) and Phenyl-C61-Butyric Acid Methyl Ester (PC61BM) Based Bulk Heterojunction Solar Cells Containing Silica and Titanium Dioxide Nanorods: Molecular Dynamics Simulations. Garg M; Padmanabhan V J Nanosci Nanotechnol; 2020 Feb; 20(2):858-870. PubMed ID: 31383081 [TBL] [Abstract][Full Text] [Related]
28. Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction. Eom SH; Baek MJ; Park H; Yan L; Liu S; You W; Lee SH ACS Appl Mater Interfaces; 2014 Jan; 6(2):803-10. PubMed ID: 24351036 [TBL] [Abstract][Full Text] [Related]
29. Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions. Carrillo JM; Seibers Z; Kumar R; Matheson MA; Ankner JF; Goswami M; Bhaskaran-Nair K; Shelton WA; Sumpter BG; Kilbey SM ACS Nano; 2016 Jul; 10(7):7008-22. PubMed ID: 27299676 [TBL] [Abstract][Full Text] [Related]
30. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell. Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188 [TBL] [Abstract][Full Text] [Related]
31. Insights into the Morphological Instability of Bulk Heterojunction PTB7-Th/PCBM Solar Cells upon High-Temperature Aging. Hsieh YJ; Huang YC; Liu WS; Su YA; Tsao CS; Rwei SP; Wang L ACS Appl Mater Interfaces; 2017 May; 9(17):14808-14816. PubMed ID: 28399362 [TBL] [Abstract][Full Text] [Related]
32. Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Jarząbek B; Nitschke P; Godzierz M; Palewicz M; Piasecki T; Gotszalk TP Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267679 [TBL] [Abstract][Full Text] [Related]
33. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry. Wang W; Pröller S; Niedermeier MA; Körstgens V; Philipp M; Su B; Moseguí González D; Yu S; Roth SV; Müller-Buschbaum P ACS Appl Mater Interfaces; 2015 Jan; 7(1):602-10. PubMed ID: 25495375 [TBL] [Abstract][Full Text] [Related]
34. Predicting vertical phase segregation in polymer-fullerene bulk heterojunction solar cells by free energy analysis. Clark MD; Jespersen ML; Patel RJ; Leever BJ ACS Appl Mater Interfaces; 2013 Jun; 5(11):4799-807. PubMed ID: 23683311 [TBL] [Abstract][Full Text] [Related]
35. Vertical phase separation of conjugated polymer and fullerene bulk heterojunction films induced by high pressure carbon dioxide treatment at ambient temperature. Kokubu R; Yang Y Phys Chem Chem Phys; 2012 Jun; 14(23):8313-8. PubMed ID: 22588284 [TBL] [Abstract][Full Text] [Related]
36. [Influence of P3HT : PCBM film formation process on the performance of polymer solar cells]. Zhou JP; Chen XH; Xu Z Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Oct; 31(10):2684-7. PubMed ID: 22250535 [TBL] [Abstract][Full Text] [Related]
37. Correlation between blend morphology and recombination dynamics in additive-added P3HT:PCBM solar cells. Solanki A; Wu B; Salim T; Lam YM; Sum TC Phys Chem Chem Phys; 2015 Oct; 17(39):26111-20. PubMed ID: 26377255 [TBL] [Abstract][Full Text] [Related]
39. Nanoscale control of the network morphology of high efficiency polymer fullerene solar cells by the use of high material concentration in the liquid phase. Radbeh R; Parbaile E; Bouclé J; Di Bin C; Moliton A; Coudert V; Rossignol F; Ratier B Nanotechnology; 2010 Jan; 21(3):035201. PubMed ID: 19966408 [TBL] [Abstract][Full Text] [Related]
40. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications. Li W; Lee T; Oh SJ; Kagan CR ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]