These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26278764)

  • 1. Understanding the Reactivity of Layered Transition-Metal Sulfides: A Single Electronic Descriptor for Structure and Adsorption.
    Tsai C; Chan K; Nørskov JK; Abild-Pedersen F
    J Phys Chem Lett; 2014 Nov; 5(21):3884-9. PubMed ID: 26278764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between the surface electronic and chemical properties of doped 4d and 5d late transition metal dioxides.
    Xu Z; Kitchin JR
    J Chem Phys; 2015 Mar; 142(10):104703. PubMed ID: 25770553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From electronic structure to catalytic activity: a single descriptor for adsorption and reactivity on transition-metal carbides.
    Vojvodic A; Hellman A; Ruberto C; Lundqvist BI
    Phys Rev Lett; 2009 Oct; 103(14):146103. PubMed ID: 19905584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study.
    Tsai C; Chan K; Abild-Pedersen F; Nørskov JK
    Phys Chem Chem Phys; 2014 Jul; 16(26):13156-64. PubMed ID: 24866567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universality in surface mixing rule of adsorption strength for small adsorbates on binary transition metal alloys.
    Ko J; Kwon H; Kang H; Kim BK; Han JW
    Phys Chem Chem Phys; 2015 Feb; 17(5):3123-30. PubMed ID: 25515855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of electronic descriptors for catalytic activity of transition-metal and non-metal doped MoS
    Xie Z; Huang X; Zhang Z; Xu H
    Phys Chem Chem Phys; 2021 Jul; 23(28):15101-15106. PubMed ID: 34250538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between electronic properties and hydrodesulfurization activity of 4d-transition-metal sulfides.
    Oviedo-Roa R; Martínez-Magadan JM; Illas F
    J Phys Chem B; 2006 Apr; 110(15):7951-66. PubMed ID: 16610894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces.
    Miller SD; Inoğlu N; Kitchin JR
    J Chem Phys; 2011 Mar; 134(10):104709. PubMed ID: 21405186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.
    Liu K; Lei Y; Wang G
    J Chem Phys; 2013 Nov; 139(20):204306. PubMed ID: 24289353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology and atomic-scale structure of single-layer WS2 nanoclusters.
    Füchtbauer HG; Tuxen AK; Moses PG; Topsøe H; Besenbacher F; Lauritsen JV
    Phys Chem Chem Phys; 2013 Oct; 15(38):15971-80. PubMed ID: 23959329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a comparative description between transition metal and zeolite catalysts for methanol conversion.
    Li H; Guo C; Huang L; Long J; Fu X; Chu W; Xiao J
    Phys Chem Chem Phys; 2020 Mar; 22(9):5293-5300. PubMed ID: 32096531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of hydrodesulfurization by transition metal sulfides by means of the Laplacian of the electronic charge density.
    Aray Y; Rodríguez J
    Chemphyschem; 2001 Oct; 2(10):599-604. PubMed ID: 23686877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of nitride oxide adsorption on transition metal (111) surfaces: a first-principles investigation.
    Zeng ZH; Da Silva JL; Li WX
    Phys Chem Chem Phys; 2010 Mar; 12(10):2459-70. PubMed ID: 20449360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces.
    Lansford JL; Mironenko AV; Vlachos DG
    Nat Commun; 2017 Nov; 8(1):1842. PubMed ID: 29184074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactivity Descriptor in Solid Acid Catalysis: Predicting Turnover Frequencies for Propene Methylation in Zeotypes.
    Wang CM; Brogaard RY; Weckhuysen BM; Nørskov JK; Studt F
    J Phys Chem Lett; 2014 May; 5(9):1516-21. PubMed ID: 26270089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.