These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26278885)

  • 1. Regeneration of glass nanofluidic chips through a multiple-step sequential thermochemical decomposition process at high temperatures.
    Xu Y; Wu Q; Shimatani Y; Yamaguchi K
    Lab Chip; 2015 Oct; 15(19):3856-61. PubMed ID: 26278885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.
    Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding.
    Abgrall P; Low LN; Nguyen NT
    Lab Chip; 2007 Apr; 7(4):520-2. PubMed ID: 17389971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments.
    Utko P; Persson F; Kristensen A; Larsen NB
    Lab Chip; 2011 Jan; 11(2):303-8. PubMed ID: 21057689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment.
    Xu Y; Wang C; Li L; Matsumoto N; Jang K; Dong Y; Mawatari K; Suga T; Kitamori T
    Lab Chip; 2013 Mar; 13(6):1048-52. PubMed ID: 23377319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes.
    Liu J; Wang L; Ouyang W; Wang W; Qin J; Xu Z; Xu S; Ge D; Wang L; Liu C; Wang L
    Biosens Bioelectron; 2015 Oct; 72():288-93. PubMed ID: 26000461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass etching to bridge micro- and nanofluidics.
    Xu BY; Yan XN; Zhang JD; Xu JJ; Chen HY
    Lab Chip; 2012 Jan; 12(2):381-6. PubMed ID: 22068964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature.
    Gu J; Gupta R; Chou CF; Wei Q; Zenhausern F
    Lab Chip; 2007 Sep; 7(9):1198-201. PubMed ID: 17713620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve.
    Mawatari K; Kubota S; Xu Y; Priest C; Sedev R; Ralston J; Kitamori T
    Anal Chem; 2012 Dec; 84(24):10812-6. PubMed ID: 23214507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoplastic nanofluidic devices for biomedical applications.
    Weerakoon-Ratnayake KM; O'Neil CE; Uba FI; Soper SA
    Lab Chip; 2017 Jan; 17(3):362-381. PubMed ID: 28009883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-enzyme analysis in a droplet-based micro- and nanofluidic system.
    Arayanarakool R; Shui L; Kengen SW; van den Berg A; Eijkel JC
    Lab Chip; 2013 May; 13(10):1955-62. PubMed ID: 23546540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method of UV-patternable hydrophobization of micro- and nanofluidic networks.
    Arayanarakool R; Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2011 Dec; 11(24):4260-6. PubMed ID: 22064947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scrolling graphene into nanofluidic channels.
    Mirsaidov U; Mokkapati VR; Bhattacharya D; Andersen H; Bosman M; Özyilmaz B; Matsudaira P
    Lab Chip; 2013 Aug; 13(15):2874-8. PubMed ID: 23702655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid glass electrodes for nanofluidics.
    Lee S; An R; Hunt AJ
    Nat Nanotechnol; 2010 Jun; 5(6):412-6. PubMed ID: 20473300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip.
    Costantini F; Tiggelaar R; Sennato S; Mura F; Schlautmann S; Bordi F; Gardeniers H; Manetti C
    Analyst; 2013 Sep; 138(17):5019-24. PubMed ID: 23831561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.