These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26278939)

  • 1. Direct Observation of Gigahertz Coherent Guided Acoustic Phonons in Free-Standing Single Copper Nanowires.
    Jean C; Belliard L; Cornelius TW; Thomas O; Toimil-Molares ME; Cassinelli M; Becerra L; Perrin B
    J Phys Chem Lett; 2014 Dec; 5(23):4100-4. PubMed ID: 26278939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gigahertz coherent guided acoustic phonons in AlN/GaN nanowire superlattices.
    Mante PA; Wu YC; Lin YT; Ho CY; Tu LW; Sun CK
    Nano Lett; 2013 Mar; 13(3):1139-44. PubMed ID: 23394396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent gigahertz phonons in Ge₂Sb₂Te₅ phase-change materials.
    Hase M; Fons P; Kolobov AV; Tominaga J
    J Phys Condens Matter; 2015 Dec; 27(48):485402. PubMed ID: 26570991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation and detection of gigahertz acoustic oscillations in thin membranes.
    Schubert M; Grossmann M; He C; Brick D; Scheel P; Ristow O; Gusev V; Dekorsy T
    Ultrasonics; 2015 Feb; 56():109-15. PubMed ID: 25149196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
    Yoshida T; Matsukawa M; Yanagitani T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1255-60. PubMed ID: 21693407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires.
    Kargar F; Debnath B; Kakko JP; Säynätjoki A; Lipsanen H; Nika DL; Lake RK; Balandin AA
    Nat Commun; 2016 Nov; 7():13400. PubMed ID: 27830698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.
    Mante PA; Huang YR; Yang SC; Liu TM; Maznev AA; Sheu JK; Sun CK
    Ultrasonics; 2015 Feb; 56():52-65. PubMed ID: 25455189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.
    Mante PA; Lehmann S; Anttu N; Dick KA; Yartsev A
    Nano Lett; 2016 Aug; 16(8):4792-8. PubMed ID: 27352041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picosecond x-ray studies of coherent folded acoustic phonons in a multiple quantum well.
    Sondhauss P; Larsson J; Harbst M; Naylor GA; Plech A; Scheidt K; Synnergren O; Wulff M; Wark JS
    Phys Rev Lett; 2005 Apr; 94(12):125509. PubMed ID: 15903936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gigahertz Optomechanical Photon-Phonon Transduction between Nanostructure Lines.
    Imade Y; Gusev VE; Matsuda O; Tomoda M; Otsuka PH; Wright OB
    Nano Lett; 2021 Jul; 21(14):6261-6267. PubMed ID: 34279964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bragg Coherent Diffractive Imaging of Zinc Oxide Acoustic Phonons at Picosecond Timescales.
    Ulvestad A; Cherukara MJ; Harder R; Cha W; Robinson IK; Soog S; Nelson S; Zhu D; Stephenson GB; Heinonen O; Jokisaari A
    Sci Rep; 2017 Aug; 7(1):9823. PubMed ID: 28852007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast carrier dynamics and coherent acoustic phonons in bulk CdSe.
    Wu W; Wang Y
    Opt Lett; 2015 Jan; 40(1):64-7. PubMed ID: 25531609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire.
    Jean C; Belliard L; Cornelius TW; Thomas O; Pennec Y; Cassinelli M; Toimil-Molares ME; Perrin B
    Nano Lett; 2016 Oct; 16(10):6592-6598. PubMed ID: 27657670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of coherent phonons with defects and elementary excitations.
    Hase M; Kitajima M
    J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance Brillouin spectroscopy of phonons induced by a piezoelectric thin film with a coaxial microwave resonator.
    Sano H; Yanagitani T; Takayanagi S; Sugimoto T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):873-6. PubMed ID: 23661120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transport and coherence properties of acoustic phonons generated by optical excitation of a quantum dot.
    Wigger D; Lüker S; Reiter DE; Axt VM; Machnikowski P; Kuhn T
    J Phys Condens Matter; 2014 Sep; 26(35):355802. PubMed ID: 25115958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
    Cuffe J; Ristow O; Chávez E; Shchepetov A; Chapuis PO; Alzina F; Hettich M; Prunnila M; Ahopelto J; Dekorsy T; Sotomayor Torres CM
    Phys Rev Lett; 2013 Mar; 110(9):095503. PubMed ID: 23496722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.