BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 26279012)

  • 41. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.
    Materne EM; Ramme AP; Terrasso AP; Serra M; Alves PM; Brito C; Sakharov DA; Tonevitsky AG; Lauster R; Marx U
    J Biotechnol; 2015 Jul; 205():36-46. PubMed ID: 25678136
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges.
    Montanez-Sauri SI; Beebe DJ; Sung KE
    Cell Mol Life Sci; 2015 Jan; 72(2):237-49. PubMed ID: 25274061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture.
    Wagner I; Materne EM; Brincker S; Süssbier U; Frädrich C; Busek M; Sonntag F; Sakharov DA; Trushkin EV; Tonevitsky AG; Lauster R; Marx U
    Lab Chip; 2013 Sep; 13(18):3538-47. PubMed ID: 23648632
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioengineering methods for analysis of cells in vitro.
    Underhill GH; Galie P; Chen CS; Bhatia SN
    Annu Rev Cell Dev Biol; 2012; 28():385-410. PubMed ID: 23057744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micromolding of shape-controlled, harvestable cell-laden hydrogels.
    Yeh J; Ling Y; Karp JM; Gantz J; Chandawarkar A; Eng G; Blumling J; Langer R; Khademhosseini A
    Biomaterials; 2006 Nov; 27(31):5391-8. PubMed ID: 16828863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional in vitro tumor models for cancer research and drug evaluation.
    Xu X; Farach-Carson MC; Jia X
    Biotechnol Adv; 2014 Nov; 32(7):1256-1268. PubMed ID: 25116894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering three-dimensional cell mechanical microenvironment with hydrogels.
    Huang G; Wang L; Wang S; Han Y; Wu J; Zhang Q; Xu F; Lu TJ
    Biofabrication; 2012 Dec; 4(4):042001. PubMed ID: 23164720
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Liver cell culture in bioreactors for in vitro drug studies as an alternative to animal testing].
    Zeilinger K; Auth S; Unger J; Grebe A; Mao L; Petrik M; Holland G; Appel K; Nüssler A; Neuhaus P; Gerlach J
    ALTEX; 2000; 17(1):3-10. PubMed ID: 11103107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models.
    Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T
    Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of microfabrication and hydrogel engineering for micro-organs on chips.
    Verhulsel M; Vignes M; Descroix S; Malaquin L; Vignjevic DM; Viovy JL
    Biomaterials; 2014 Feb; 35(6):1816-32. PubMed ID: 24314552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice.
    Ruedinger F; Lavrentieva A; Blume C; Pepelanova I; Scheper T
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):623-36. PubMed ID: 25432676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering the heart piece by piece: state of the art in cardiac tissue engineering.
    Hecker L; Birla RK
    Regen Med; 2007 Mar; 2(2):125-44. PubMed ID: 17465746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physically Active Bioreactors for Tissue Engineering Applications.
    Castro N; Ribeiro S; Fernandes MM; Ribeiro C; Cardoso V; Correia V; Minguez R; Lanceros-Mendez S
    Adv Biosyst; 2020 Oct; 4(10):e2000125. PubMed ID: 32924326
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.
    Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O
    J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology.
    Lee SH; Sung JH
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28945001
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of body-on-a-chip devices in drug and toxicity studies.
    Esch MB; King TL; Shuler ML
    Annu Rev Biomed Eng; 2011 Aug; 13():55-72. PubMed ID: 21513459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strategy for achieving standardized bone models.
    Hadida M; Marchat D
    Biotechnol Bioeng; 2020 Jan; 117(1):251-271. PubMed ID: 31531968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions.
    Bale SS; Borenstein JT
    Drug Metab Dispos; 2018 Nov; 46(11):1638-1646. PubMed ID: 30115643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic organ-on-a-chip models of human liver tissue.
    Moradi E; Jalili-Firoozinezhad S; Solati-Hashjin M
    Acta Biomater; 2020 Oct; 116():67-83. PubMed ID: 32890749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.