BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

857 related articles for article (PubMed ID: 26279142)

  • 1. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae.
    He X; Liu B; Xu Y; Chen Z; Li H
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2597-2611. PubMed ID: 33646374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using drug-loaded pH-responsive poly(4-vinylpyridine) microspheres as a new strategy for intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation.
    Li M; Hu HW; Chen Z; Zhang YX; Li H
    World J Microbiol Biotechnol; 2018 Sep; 34(10):146. PubMed ID: 30206729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic responses to Lactobacillus plantarum contamination or bacteriophage treatment in Saccharomyces cerevisiae using a GC-MS-based metabolomics approach.
    Cui FX; Zhang RM; Liu HQ; Wang YF; Li H
    World J Microbiol Biotechnol; 2015 Dec; 31(12):2003-13. PubMed ID: 26385547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation.
    Abe A; Furukawa S; Watanabe S; Morinaga Y
    Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae.
    Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY
    Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash.
    Narendranath NV; Power R
    J Ind Microbiol Biotechnol; 2004 Dec; 31(12):581-4. PubMed ID: 15599666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
    Basso TO; Gomes FS; Lopes ML; de Amorim HV; Eggleston G; Basso LC
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):169-77. PubMed ID: 24198118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.
    Dong SJ; Yi CF; Li H
    Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of lactic acid bacteria that can form mixed-species biofilm with Saccharomyces cerevisiae.
    Furukawa S; Isomae R; Tsuchiya N; Hirayama S; Yamagishi A; Kobayashi M; Suzuki C; Ogihara H; Morinaga Y
    Biosci Biotechnol Biochem; 2015; 79(4):681-6. PubMed ID: 25514879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Saccharomyces cerevisiae quorum sensing signal molecules on ethanol production in bioethanol fermentation process.
    Tian J; Lin Y; Su X; Tan H; Gan C; Ragauskas AJ
    Microbiol Res; 2023 Jun; 271():127367. PubMed ID: 36989758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation.
    Ventimiglia G; Alfonzo A; Galluzzo P; Corona O; Francesca N; Caracappa S; Moschetti G; Settanni L
    Food Microbiol; 2015 Oct; 51():57-68. PubMed ID: 26187828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation.
    Carvalho-Netto OV; Carazzolle MF; Rodrigues A; Bragança WO; Costa GG; Argueso JL; Pereira GA
    J Biotechnol; 2013 Dec; 168(4):701-9. PubMed ID: 23994268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.