These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
858 related articles for article (PubMed ID: 26279142)
1. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation. Dong SJ; Lin XH; Li H Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142 [TBL] [Abstract][Full Text] [Related]
2. Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. He X; Liu B; Xu Y; Chen Z; Li H Appl Microbiol Biotechnol; 2021 Mar; 105(6):2597-2611. PubMed ID: 33646374 [TBL] [Abstract][Full Text] [Related]
3. Using drug-loaded pH-responsive poly(4-vinylpyridine) microspheres as a new strategy for intelligent controlling of Lactobacillus plantarum contamination in bioethanol fermentation. Li M; Hu HW; Chen Z; Zhang YX; Li H World J Microbiol Biotechnol; 2018 Sep; 34(10):146. PubMed ID: 30206729 [TBL] [Abstract][Full Text] [Related]
4. Metabolic responses to Lactobacillus plantarum contamination or bacteriophage treatment in Saccharomyces cerevisiae using a GC-MS-based metabolomics approach. Cui FX; Zhang RM; Liu HQ; Wang YF; Li H World J Microbiol Biotechnol; 2015 Dec; 31(12):2003-13. PubMed ID: 26385547 [TBL] [Abstract][Full Text] [Related]
5. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation. Abe A; Furukawa S; Watanabe S; Morinaga Y Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789 [TBL] [Abstract][Full Text] [Related]
6. The role of nisin in fuel ethanol production with Saccharomyces cerevisiae. Peng J; Zhang L; Gu ZH; Ding ZY; Shi GY Lett Appl Microbiol; 2012 Aug; 55(2):128-34. PubMed ID: 22691226 [TBL] [Abstract][Full Text] [Related]
7. Effect of yeast inoculation rate on the metabolism of contaminating lactobacilli during fermentation of corn mash. Narendranath NV; Power R J Ind Microbiol Biotechnol; 2004 Dec; 31(12):581-4. PubMed ID: 15599666 [TBL] [Abstract][Full Text] [Related]
9. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. Dong SJ; Yi CF; Li H Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124 [TBL] [Abstract][Full Text] [Related]
10. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae. Jayakody LN; Horie K; Hayashi N; Kitagaki H Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286 [TBL] [Abstract][Full Text] [Related]
11. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317 [TBL] [Abstract][Full Text] [Related]
12. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
13. Screening of lactic acid bacteria that can form mixed-species biofilm with Saccharomyces cerevisiae. Furukawa S; Isomae R; Tsuchiya N; Hirayama S; Yamagishi A; Kobayashi M; Suzuki C; Ogihara H; Morinaga Y Biosci Biotechnol Biochem; 2015; 79(4):681-6. PubMed ID: 25514879 [TBL] [Abstract][Full Text] [Related]
14. Effects of Saccharomyces cerevisiae quorum sensing signal molecules on ethanol production in bioethanol fermentation process. Tian J; Lin Y; Su X; Tan H; Gan C; Ragauskas AJ Microbiol Res; 2023 Jun; 271():127367. PubMed ID: 36989758 [TBL] [Abstract][Full Text] [Related]
15. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae. Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508 [TBL] [Abstract][Full Text] [Related]
16. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Ventimiglia G; Alfonzo A; Galluzzo P; Corona O; Francesca N; Caracappa S; Moschetti G; Settanni L Food Microbiol; 2015 Oct; 51():57-68. PubMed ID: 26187828 [TBL] [Abstract][Full Text] [Related]
17. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. Zhang Y; Vadlani PV J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329 [TBL] [Abstract][Full Text] [Related]
18. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [TBL] [Abstract][Full Text] [Related]
19. A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation. Carvalho-Netto OV; Carazzolle MF; Rodrigues A; Bragança WO; Costa GG; Argueso JL; Pereira GA J Biotechnol; 2013 Dec; 168(4):701-9. PubMed ID: 23994268 [TBL] [Abstract][Full Text] [Related]
20. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]