These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26279383)

  • 1. Roaming as the dominant mechanism for molecular products in the photodissociation of large aliphatic aldehydes.
    Tsai PY; Li HK; Kasai T; Lin KC
    Phys Chem Chem Phys; 2015 Sep; 17(35):23112-20. PubMed ID: 26279383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodissociation of Propionaldehyde at 248 nm: Roaming Pathway as an Increasingly Important Role in Large Aliphatic Aldehydes.
    Tsai PY; Hung KC; Li HK; Lin KC
    J Phys Chem Lett; 2014 Jan; 5(1):190-5. PubMed ID: 26276201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Communication: photodissociation of CH3CHO at 308 nm: observation of H-roaming, CH3-roaming, and transition state pathways together along the ground state surface.
    Li HK; Tsai PY; Hung KC; Kasai T; Lin KC
    J Chem Phys; 2015 Jan; 142(4):041101. PubMed ID: 25637960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roaming is the dominant mechanism for molecular products in acetaldehyde photodissociation.
    Heazlewood BR; Jordan MJ; Kable SH; Selby TM; Osborn DL; Shepler BC; Braams BJ; Bowman JM
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12719-24. PubMed ID: 18687891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two HCl-Elimination Channels and Two CO-Formation Channels Detected with Time-Resolved Infrared Emission upon Photolysis of Acryloyl Chloride [CH2CHC(O)Cl] at 193 nm.
    Lee PW; Scrape PG; Butler LJ; Lee YP
    J Phys Chem A; 2015 Jul; 119(28):7293-304. PubMed ID: 25658197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: verification of roaming and triple fragmentation.
    Hung KC; Tsai PY; Li HK; Lin KC
    J Chem Phys; 2014 Feb; 140(6):064313. PubMed ID: 24527921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slice imaging of the photodissociation of acetaldehyde at 248 nm. Evidence of a roaming mechanism.
    Rubio-Lago L; Amaral GA; Arregui A; Izquierdo JG; Wang F; Zaouris D; Kitsopoulos TN; Bañares L
    Phys Chem Chem Phys; 2007 Dec; 9(46):6123-7. PubMed ID: 18167587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular elimination of methyl formate in photolysis at 234 nm: roaming vs. transition state-type mechanism.
    Chao MH; Tsai PY; Lin KC
    Phys Chem Chem Phys; 2011 Apr; 13(15):7154-61. PubMed ID: 21399783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roaming Dynamics and Conformational Memory in Photolysis of Formic Acid at 193 nm Using Time-resolved Fourier-transform Infrared Emission Spectroscopy.
    Tso CJ; Kasai T; Lin KC
    Sci Rep; 2020 Mar; 10(1):4769. PubMed ID: 32179782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared Emission from Photodissociation of Methyl Formate [HC(O)OCH
    Lanfri L; Wang YL; Pham TV; Nguyen NT; Paci MB; Lin MC; Lee YP
    J Phys Chem A; 2019 Jul; 123(29):6130-6143. PubMed ID: 31267746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roaming dynamics in acetone dissociation.
    Goncharov V; Herath N; Suits AG
    J Phys Chem A; 2008 Oct; 112(39):9423-8. PubMed ID: 18588266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roaming atom pathway in formaldehyde decomposition.
    Lahankar SA; Chambreau SD; Townsend D; Suits F; Farnum J; Zhang X; Bowman JM; Suits AG
    J Chem Phys; 2006 Jul; 125(4):44303. PubMed ID: 16942138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging the molecular channel in acetaldehyde photodissociation: roaming and transition state mechanisms.
    Rubio-Lago L; Amaral GA; Arregui A; González-Vázquez J; Bañares L
    Phys Chem Chem Phys; 2012 May; 14(17):6067-78. PubMed ID: 22450696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nonadiabatic processes in the photolysis of some carbonyl compounds.
    Lin KC
    Phys Chem Chem Phys; 2016 Mar; 18(10):6980-95. PubMed ID: 26887778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roaming dynamics in formaldehyde-d2 dissociation.
    Goncharov V; Lahankar SA; Farnum JD; Bowman JM; Suits AG
    J Phys Chem A; 2009 Dec; 113(52):15315-9. PubMed ID: 19775138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodissociation of CH
    Han YC; Tsai PY; Bowman JM; Lin KC
    Phys Chem Chem Phys; 2017 Jul; 19(28):18628-18634. PubMed ID: 28692092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodissociation of acetaldehyde as a second example of the roaming mechanism.
    Houston PL; Kable SH
    Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16079-82. PubMed ID: 17047035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formaldehyde photodissociation: dependence on total angular momentum and rotational alignment of the CO product.
    Farnum JD; Zhang X; Bowman JM
    J Chem Phys; 2007 Apr; 126(13):134305. PubMed ID: 17430030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy dependence of the roaming atom pathway in formaldehyde decomposition.
    Lahankar SA; Chambreau SD; Zhang X; Bowman JM; Suits AG
    J Chem Phys; 2007 Jan; 126(4):044314. PubMed ID: 17286477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-resolved dynamics of the CN(B2Sigma+) and CH(A2Delta) excited products resulting from the VUV photodissociation of CH3CN.
    Howle CR; Arrowsmith AN; Chikan V; Leone SR
    J Phys Chem A; 2007 Jul; 111(29):6637-48. PubMed ID: 17388380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.