BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26279500)

  • 1. Risk factor detection for heart disease by applying text analytics in electronic medical records.
    Torii M; Fan JW; Yang WL; Lee T; Wiley MT; Zisook DS; Huang Y
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S164-S170. PubMed ID: 26279500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automatic system to identify heart disease risk factors in clinical texts over time.
    Chen Q; Li H; Tang B; Wang X; Liu X; Liu Z; Liu S; Wang W; Deng Q; Zhu S; Chen Y; Wang J
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S158-S163. PubMed ID: 26362344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes.
    Khalifa A; Meystre S
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S128-S132. PubMed ID: 26318122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining glass box and black box evaluations in the identification of heart disease risk factors and their temporal relations from clinical records.
    Grouin C; Moriceau V; Zweigenbaum P
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S133-S142. PubMed ID: 26142870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge.
    Cormack J; Nath C; Milward D; Raja K; Jonnalagadda SR
    J Biomed Inform; 2015 Dec; 58 Suppl(0):S120-S127. PubMed ID: 26209007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models.
    Urbain J
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S143-S149. PubMed ID: 26305514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using local lexicalized rules to identify heart disease risk factors in clinical notes.
    Karystianis G; Dehghan A; Kovacevic A; Keane JA; Nenadic G
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S183-S188. PubMed ID: 26133479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A context-aware approach for progression tracking of medical concepts in electronic medical records.
    Chang NW; Dai HJ; Jonnagaddala J; Chen CW; Tsai RT; Hsu WL
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S150-S157. PubMed ID: 26432355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2.
    Stubbs A; Kotfila C; Xu H; Uzuner Ö
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S67-S77. PubMed ID: 26210362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary artery disease risk assessment from unstructured electronic health records using text mining.
    Jonnagaddala J; Liaw ST; Ray P; Kumar M; Chang NW; Dai HJ
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S203-S210. PubMed ID: 26319542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs.
    Roberts K; Shooshan SE; Rodriguez L; Abhyankar S; Kilicoglu H; Demner-Fushman D
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S111-S119. PubMed ID: 26122527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.
    Shivade C; Malewadkar P; Fosler-Lussier E; Lai AM
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S103-S110. PubMed ID: 26375493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annotating risk factors for heart disease in clinical narratives for diabetic patients.
    Stubbs A; Uzuner Ö
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S78-S91. PubMed ID: 26004790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid model for automatic identification of risk factors for heart disease.
    Yang H; Garibaldi JM
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S171-S182. PubMed ID: 26375492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of a new longitudinal corpus of clinical narratives.
    Kumar V; Stubbs A; Shaw S; Uzuner Ö
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S6-S10. PubMed ID: 26433122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated systems for the de-identification of longitudinal clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1.
    Stubbs A; Kotfila C; Uzuner Ö
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S11-S19. PubMed ID: 26225918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Annotating longitudinal clinical narratives for de-identification: The 2014 i2b2/UTHealth corpus.
    Stubbs A; Uzuner Ö
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S20-S29. PubMed ID: 26319540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic de-identification of electronic medical records using token-level and character-level conditional random fields.
    Liu Z; Chen Y; Tang B; Wang X; Chen Q; Li H; Wang J; Deng Q; Zhu S
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S47-S52. PubMed ID: 26122526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRFs based de-identification of medical records.
    He B; Guan Y; Cheng J; Cen K; Hua W
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S39-S46. PubMed ID: 26315662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic detection of protected health information from clinic narratives.
    Yang H; Garibaldi JM
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S30-S38. PubMed ID: 26231070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.