BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26279500)

  • 21. Combining knowledge- and data-driven methods for de-identification of clinical narratives.
    Dehghan A; Kovacevic A; Karystianis G; Keane JA; Nenadic G
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S53-S59. PubMed ID: 26210359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hidden Markov model using Dirichlet process for de-identification.
    Chen T; Cullen RM; Godwin M
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S60-S66. PubMed ID: 26407642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical applications for natural language processing in clinical research: The 2014 i2b2/UTHealth shared tasks.
    Uzuner Ö; Stubbs A
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S1-S5. PubMed ID: 26515500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting earlier indicators of homelessness in the free text of medical records.
    Redd A; Carter M; Divita G; Shen S; Palmer M; Samore M; Gundlapalli AV
    Stud Health Technol Inform; 2014; 202():153-6. PubMed ID: 25000039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural Language Processing Technologies in Radiology Research and Clinical Applications.
    Cai T; Giannopoulos AA; Yu S; Kelil T; Ripley B; Kumamaru KK; Rybicki FJ; Mitsouras D
    Radiographics; 2016; 36(1):176-91. PubMed ID: 26761536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast Model Adaptation for Automated Section Classification in Electronic Medical Records.
    Ni J; Delaney B; Florian R
    Stud Health Technol Inform; 2015; 216():35-9. PubMed ID: 26262005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using natural language processing to identify problem usage of prescription opioids.
    Carrell DS; Cronkite D; Palmer RE; Saunders K; Gross DE; Masters ET; Hylan TR; Von Korff M
    Int J Med Inform; 2015 Dec; 84(12):1057-64. PubMed ID: 26456569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches.
    Grouin C; Zweigenbaum P
    Stud Health Technol Inform; 2013; 192():476-80. PubMed ID: 23920600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automatic extraction of numerical values from unstructured data in EHRs.
    Bigeard E; Jouhet V; Mougin F; Thiessard F; Grabar N
    Stud Health Technol Inform; 2015; 210():50-4. PubMed ID: 25991100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient pancreatic cyst identification methodology using natural language processing.
    Mehrabi S; Schmidt CM; Waters JA; Beesley C; Krishnan A; Kesterson J; Dexter P; Al-Haddad MA; Tierney WM; Palakal M
    Stud Health Technol Inform; 2013; 192():822-6. PubMed ID: 23920672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records.
    Wang Y; Luo J; Hao S; Xu H; Shin AY; Jin B; Liu R; Deng X; Wang L; Zheng L; Zhao Y; Zhu C; Hu Z; Fu C; Hao Y; Zhao Y; Jiang Y; Dai D; Culver DS; Alfreds ST; Todd R; Stearns F; Sylvester KG; Widen E; Ling XB
    Int J Med Inform; 2015 Dec; 84(12):1039-47. PubMed ID: 26254876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and evaluation of task-specific NLP framework in China.
    Ge C; Zhang Y; Huang Z; Jia Z; Ju M; Duan H; Li H
    Stud Health Technol Inform; 2015; 216():1031. PubMed ID: 26262331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inventory of tools for Dutch clinical language processing.
    Cornet R; Van Eldik A; De Keizer N
    Stud Health Technol Inform; 2012; 180():245-9. PubMed ID: 22874189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Textual inference for eligibility criteria resolution in clinical trials.
    Shivade C; Hebert C; Lopetegui M; de Marneffe MC; Fosler-Lussier E; Lai AM
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S211-S218. PubMed ID: 26376462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records.
    Byrd RJ; Steinhubl SR; Sun J; Ebadollahi S; Stewart WF
    Int J Med Inform; 2014 Dec; 83(12):983-92. PubMed ID: 23317809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text.
    Heintzelman NH; Taylor RJ; Simonsen L; Lustig R; Anderko D; Haythornthwaite JA; Childs LC; Bova GS
    J Am Med Inform Assoc; 2013; 20(5):898-905. PubMed ID: 23144336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning multiple distributed prototypes of semantic categories for named entity recognition.
    Henriksson A
    Int J Data Min Bioinform; 2015; 13(4):395-411. PubMed ID: 26547986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches.
    Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH
    J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recognizing Questions and Answers in EMR Templates Using Natural Language Processing.
    Divita G; Shen S; Carter ME; Redd A; Forbush T; Palmer M; Samore MH; Gundlapalli AV
    Stud Health Technol Inform; 2014; 202():149-52. PubMed ID: 25000038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.