These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26279500)

  • 61. Automating Ischemic Stroke Subtype Classification Using Machine Learning and Natural Language Processing.
    Garg R; Oh E; Naidech A; Kording K; Prabhakaran S
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2045-2051. PubMed ID: 31103549
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Natural language processing and inference rules as strategies for updating problem list in an electronic health record.
    Plazzotta F; Otero C; Luna D; de Quiros FG
    Stud Health Technol Inform; 2013; 192():1163. PubMed ID: 23920937
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Heart disease risk factors detection from electronic health records using advanced NLP and deep learning techniques.
    Houssein EH; Mohamed RE; Ali AA
    Sci Rep; 2023 May; 13(1):7173. PubMed ID: 37138014
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Second i2b2 workshop on natural language processing challenges for clinical records.
    Uzuner O
    AMIA Annu Symp Proc; 2008 Nov; ():1252-3. PubMed ID: 18998924
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Use of Natural Language Processing to Extract Clinical Cancer Phenotypes from Electronic Medical Records.
    Savova GK; Danciu I; Alamudun F; Miller T; Lin C; Bitterman DS; Tourassi G; Warner JL
    Cancer Res; 2019 Nov; 79(21):5463-5470. PubMed ID: 31395609
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ease of adoption of clinical natural language processing software: An evaluation of five systems.
    Zheng K; Vydiswaran VGV; Liu Y; Wang Y; Stubbs A; Uzuner Ö; Gururaj AE; Bayer S; Aberdeen J; Rumshisky A; Pakhomov S; Liu H; Xu H
    J Biomed Inform; 2015 Dec; 58 Suppl(Suppl):S189-S196. PubMed ID: 26210361
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data.
    Dreisbach C; Koleck TA; Bourne PE; Bakken S
    Int J Med Inform; 2019 May; 125():37-46. PubMed ID: 30914179
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 69. General Symptom Extraction from VA Electronic Medical Notes.
    Divita G; Luo G; Tran LT; Workman TE; Gundlapalli AV; Samore MH
    Stud Health Technol Inform; 2017; 245():356-360. PubMed ID: 29295115
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Proposal and evaluation of FASDIM, a Fast And Simple De-Identification Method for unstructured free-text clinical records.
    Chazard E; Mouret C; Ficheur G; Schaffar A; Beuscart JB; Beuscart R
    Int J Med Inform; 2014 Apr; 83(4):303-12. PubMed ID: 24370391
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records.
    Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of inactive medications in narrative medical text.
    Breydo EM; Chu JT; Turchin A
    AMIA Annu Symp Proc; 2008 Nov; 2008():66-70. PubMed ID: 18999079
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A study of deep learning methods for de-identification of clinical notes in cross-institute settings.
    Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Automated detection of ambiguity in BI-RADS assessment categories in mammography reports.
    Bozkurt S; Rubin D
    Stud Health Technol Inform; 2014; 197():35-9. PubMed ID: 24743074
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Machine Learning for Knowledge Extraction from PHR Big Data.
    Poulymenopoulou M; Malamateniou F; Vassilacopoulos G
    Stud Health Technol Inform; 2014; 202():36-9. PubMed ID: 25000009
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Extraction Of Adverse Events From Clinical Documents To Support Decision Making Using Semantic Preprocessing.
    Gaebel J; Kolter T; Arlt F; Denecke K
    Stud Health Technol Inform; 2015; 216():1030. PubMed ID: 26262330
    [TBL] [Abstract][Full Text] [Related]  

  • 77. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions.
    Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E
    J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Automated Learning of Temporal Expressions.
    Redd D; Shaoa Y; Yang J; Divita G; Zeng-Treitler Q
    Stud Health Technol Inform; 2015; 216():639-42. PubMed ID: 26262129
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Full-text automated detection of surgical site infections secondary to neurosurgery in Rennes, France.
    Campillo-Gimenez B; Garcelon N; Jarno P; Chapplain JM; Cuggia M
    Stud Health Technol Inform; 2013; 192():572-5. PubMed ID: 23920620
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of Markup Language for Medical Record Charting: A Charting Language.
    Jung WM; Chae Y; Jang BH
    Stud Health Technol Inform; 2015; 216():879. PubMed ID: 26262181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.