These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26279533)

  • 41. Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores.
    Mo T; Bi S; Zhang Y; Presser V; Wang X; Gogotsi Y; Feng G
    ACS Nano; 2020 Feb; 14(2):2395-2403. PubMed ID: 31999427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ionic solvation and solvent-solvent interaction effects on the charge and potential distributions in electric double layers.
    Vangara R; van Swol F; Petsev DN
    J Chem Phys; 2017 Dec; 147(21):214704. PubMed ID: 29221419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The electrode/ionic liquid interface: electric double layer and metal electrodeposition.
    Su YZ; Fu YC; Wei YM; Yan JW; Mao BW
    Chemphyschem; 2010 Sep; 11(13):2764-78. PubMed ID: 20718064
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrochemistry meets polymer physics: polymerized ionic liquids on an electrified electrode.
    Budkov YA; Kalikin NN; Kolesnikov AL
    Phys Chem Chem Phys; 2022 Jan; 24(3):1355-1366. PubMed ID: 34935795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of ionic liquid mediated quantised charging of monolayer-protected clusters.
    Mertens SF; Mészáros G; Wandlowski T
    Phys Chem Chem Phys; 2010; 12(20):5417-24. PubMed ID: 20376395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical properties of the double layer of an ionic liquid using a dimer model electrolyte and density functional theory.
    Henderson D; Wu J
    J Phys Chem B; 2012 Mar; 116(8):2520-5. PubMed ID: 22280446
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Restructuring of the electrical double layer in ionic liquids upon charging.
    Ivaništšev V; Kirchner K; Kirchner T; Fedorov MV
    J Phys Condens Matter; 2015 Mar; 27(10):102101. PubMed ID: 25680201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study.
    Li S; Feng G; Cummings PT
    J Phys Condens Matter; 2014 Jul; 26(28):284106. PubMed ID: 24920318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical Insights into the Structures and Capacitive Performances of Confined Ionic Liquids.
    Yang J; Ding Y; Lian C; Ying S; Liu H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32213943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discharging dynamics in an electrolytic cell.
    Feicht SE; Frankel AE; Khair AS
    Phys Rev E; 2016 Jul; 94(1-1):012601. PubMed ID: 27575173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factors affecting the stability and performance of ionic liquid-based planar transient photodetectors.
    Dalgleish S; Reissig L; Hu L; Matsushita MM; Sudo Y; Awaga K
    Langmuir; 2015 May; 31(18):5235-43. PubMed ID: 25895167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atomic structure and electrical property of ionic liquids at the MoS
    Wang M; Wang Y; Li M; Wang S; He H
    J Mol Model; 2021 Jan; 27(2):41. PubMed ID: 33459900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Size asymmetric hard spheres as a convenient model for the capacitance of the electrical double layer of an ionic liquid.
    Lamperski S; Sosnowska J; Bhuiyan LB; Henderson D
    J Chem Phys; 2014 Jan; 140(1):014704. PubMed ID: 24410234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The non-dominance of counterions in charge-asymmetric electrolytes: non-monotonic precedence of electrostatic screening and local inversion of the electric field by multivalent coions.
    Guerrero-García GI; González-Tovar E; Quesada-Pérez M; Martín-Molina A
    Phys Chem Chem Phys; 2016 Aug; 18(31):21852-64. PubMed ID: 27435382
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular insights into the electric double layers of ionic liquids on Au(100) electrodes.
    Sha M; Dou Q; Luo F; Zhu G; Wu G
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12556-65. PubMed ID: 25046476
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A network model to predict ionic transport in porous materials.
    Henrique F; Żuk PJ; Gupta A
    Proc Natl Acad Sci U S A; 2024 May; 121(22):e2401656121. PubMed ID: 38787880
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correction to "Kinetic Charging Inversion in Ionic Liquid Electric Double Layers".
    Jiang J; Cao D; Jiang DE; Wu J
    J Phys Chem Lett; 2020 Dec; 11(23):10203-10204. PubMed ID: 33205973
    [No Abstract]   [Full Text] [Related]  

  • 59. On the dynamics of charging in nanoporous carbon-based supercapacitors.
    Péan C; Merlet C; Rotenberg B; Madden PA; Taberna PL; Daffos B; Salanne M; Simon P
    ACS Nano; 2014 Feb; 8(2):1576-83. PubMed ID: 24417256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic-Dominated Charging Mechanism within Representative Aqueous Electrolyte-based Electric Double-Layer Capacitors.
    Yang H; Yang J; Bo Z; Chen X; Shuai X; Kong J; Yan J; Cen K
    J Phys Chem Lett; 2017 Aug; 8(15):3703-3710. PubMed ID: 28742361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.