These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26279538)

  • 21. Direct experimental probing and theoretical analysis of the reaction between the simplest Criegee intermediate CH
    Decker ZC; Au K; Vereecken L; Sheps L
    Phys Chem Chem Phys; 2017 Mar; 19(12):8541-8551. PubMed ID: 28288212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of the Gas Phase Reactions of the Criegee Intermediate CH
    Onel L; Blitz M; Seakins P; Heard D; Stone D
    J Phys Chem A; 2020 Aug; 124(31):6287-6293. PubMed ID: 32667796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct kinetics study of CH
    Eskola AJ; Döntgen M; Rotavera B; Caravan RL; Welz O; Savee JD; Osborn DL; Shallcross DE; Percival CJ; Taatjes CA
    Phys Chem Chem Phys; 2018 Jul; 20(29):19373-19381. PubMed ID: 29999060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature-Dependent Rate Coefficients for the Reaction of CH
    Smith MC; Chao W; Kumar M; Francisco JS; Takahashi K; Lin JJ
    J Phys Chem A; 2017 Feb; 121(5):938-945. PubMed ID: 28067517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of the Reactions between the Criegee Intermediate CH
    Tadayon SV; Foreman ES; Murray C
    J Phys Chem A; 2018 Jan; 122(1):258-268. PubMed ID: 29286244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute Ultraviolet Absorption Spectrum of a Criegee Intermediate CH2OO.
    Sheps L
    J Phys Chem Lett; 2013 Dec; 4(24):4201-5. PubMed ID: 26296165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry.
    Berndt T; Herrmann H; Kurtén T
    J Am Chem Soc; 2017 Sep; 139(38):13387-13392. PubMed ID: 28853879
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.
    Foreman ES; Kapnas KM; Jou Y; Kalinowski J; Feng D; Gerber RB; Murray C
    Phys Chem Chem Phys; 2015 Dec; 17(48):32539-46. PubMed ID: 26595457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH
    Peltola J; Seal P; Inkilä A; Eskola A
    Phys Chem Chem Phys; 2020 Jun; 22(21):11797-11808. PubMed ID: 32347242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of and Dissociative Electron Attachment to the Simplest Criegee Intermediate in an Afterglow.
    Wiens JP; Shuman NS; Viggiano AA
    J Phys Chem Lett; 2015 Feb; 6(3):383-7. PubMed ID: 26261951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature-Dependent Rate Coefficient for the Reaction of CH
    Li YL; Lin YH; Yin C; Takahashi K; Chiang CY; Chang YP; Lin JJ
    J Phys Chem A; 2019 May; 123(19):4096-4103. PubMed ID: 31017782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical Kinetic Study of the Reaction of CH
    Chao W; Markus CR; Okumura M; Winiberg FAF; Percival CJ
    J Phys Chem Lett; 2024 Apr; 15(13):3690-3697. PubMed ID: 38546268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and computational studies of Criegee intermediate reactions with NH
    Chhantyal-Pun R; Shannon RJ; Tew DP; Caravan RL; Duchi M; Wong C; Ingham A; Feldman C; McGillen MR; Khan MAH; Antonov IO; Rotavera B; Ramasesha K; Osborn DL; Taatjes CA; Percival CJ; Shallcross DE; Orr-Ewing AJ
    Phys Chem Chem Phys; 2019 Jul; 21(26):14042-14052. PubMed ID: 30652179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of the Reactions of CH
    Cornwell ZA; Harrison AW; Murray C
    J Phys Chem A; 2021 Oct; 125(39):8557-8571. PubMed ID: 34554761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative Reactivity Measurements of Stabilized CH
    Yajima R; Sakamoto Y; Inomata S; Hirokawa J
    J Phys Chem A; 2017 Aug; 121(34):6440-6449. PubMed ID: 28771360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cm(-1) and new assignments of bands 2ν9 and ν5.
    Huang YH; Li J; Guo H; Lee YP
    J Chem Phys; 2015 Jun; 142(21):214301. PubMed ID: 26049490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.
    Su YT; Huang YH; Witek HA; Lee YP
    Science; 2013 Apr; 340(6129):174-6. PubMed ID: 23580523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry.
    Su YT; Lin HY; Putikam R; Matsui H; Lin MC; Lee YP
    Nat Chem; 2014 Jun; 6(6):477-83. PubMed ID: 24848232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.