BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26279678)

  • 1. Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae.
    Li X; Chomvong K; Yu VY; Liang JM; Lin Y; Cate JHD
    Biotechnol Biofuels; 2015; 8():120. PubMed ID: 26279678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol production from cellobionic acid in Escherichia coli.
    Desai SH; Rabinovitch-Deere CA; Fan Z; Atsumi S
    Microb Cell Fact; 2015 Apr; 14():52. PubMed ID: 25889729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi.
    Nihira T; Saito Y; Nishimoto M; Kitaoka M; Igarashi K; Ohtsubo K; Nakai H
    FEBS Lett; 2013 Nov; 587(21):3556-61. PubMed ID: 24055472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of itaconic acid production on Neurospora crassa in consolidated bioprocessing of cellulose.
    Zhao J; Ma C; Mei Y; Han J; Zhao C
    Microb Cell Fact; 2023 Feb; 22(1):28. PubMed ID: 36774527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes.
    Nam YW; Nihira T; Arakawa T; Saito Y; Kitaoka M; Nakai H; Fushinobu S
    J Biol Chem; 2015 Jul; 290(30):18281-92. PubMed ID: 26041776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content.
    Cannella D; Hsieh CW; Felby C; Jørgensen H
    Biotechnol Biofuels; 2012 Apr; 5(1):26. PubMed ID: 22546481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling a classical mutant in the context of the GH3 β-glucosidase family in Neurospora crassa.
    Zhang Y; Nada B; Baker SE; Evans JE; Tian C; Benz JP; Tamayo E
    AMB Express; 2024 Jan; 14(1):4. PubMed ID: 38180602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
    Müller G; Várnai A; Johansen KS; Eijsink VG; Horn SJ
    Biotechnol Biofuels; 2015; 8():187. PubMed ID: 26609322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.
    Li X; Yu VY; Lin Y; Chomvong K; Estrela R; Park A; Liang JM; Znameroski EA; Feehan J; Kim SR; Jin YS; Glass NL; Cate JH
    Elife; 2015 Feb; 4():. PubMed ID: 25647728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and manipulation of
    Feldman D; Kowbel DJ; Cohen A; Glass NL; Hadar Y; Yarden O
    Biotechnol Biofuels; 2019; 12():210. PubMed ID: 31508149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A screening approach for assessing lytic polysaccharide monooxygenase activity in fungal strains.
    Dixit P; Basu B; Puri M; Tuli DK; Mathur AS; Barrow CJ
    Biotechnol Biofuels; 2019; 12():185. PubMed ID: 31360222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Regulatory Network between the SREBP Pathway and Protein Secretion in
    Qin L; Wu VW; Glass NL
    mBio; 2017 Apr; 8(2):. PubMed ID: 28420736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct target network of the Neurospora crassa plant cell wall deconstruction regulators CLR-1, CLR-2, and XLR-1.
    Craig JP; Coradetti ST; Starr TL; Glass NL
    mBio; 2015 Oct; 6(5):e01452-15. PubMed ID: 26463163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?
    Dogaris I; Mamma D; Kekos D
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1457-73. PubMed ID: 23318834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6.
    Patel I; Kracher D; Ma S; Garajova S; Haon M; Faulds CB; Berrin JG; Ludwig R; Record E
    Biotechnol Biofuels; 2016; 9():108. PubMed ID: 27213015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa.
    Zhao C; Chen S; Fang H
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9577-9584. PubMed ID: 30225531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa.
    Dogaris I; Gkounta O; Mamma D; Kekos D
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):541-50. PubMed ID: 22573272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.