These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26280188)

  • 1. Thermal detection of a prevascular tumor embedded in breast tissue.
    Agyingi E; Wiandt T; Maggelakis SA
    Math Biosci Eng; 2015 Oct; 12(5):907-15. PubMed ID: 26280188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.
    Amri A; Pulko SH; Wilkinson AJ
    Comput Methods Programs Biomed; 2016 Jan; 123():68-80. PubMed ID: 26522612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of forced convection on the skin thermal expression of breast cancer.
    Hu L; Gupta A; Gore JP; Xu LX
    J Biomech Eng; 2004 Apr; 126(2):204-11. PubMed ID: 15179850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and efficient method for breast cancer diagnosis based on infrared thermal imaging.
    Han F; Shi G; Liang C; Wang L; Li K
    Cell Biochem Biophys; 2015 Jan; 71(1):491-8. PubMed ID: 25194831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.
    Das K; Mishra SC
    J Therm Biol; 2015 Aug; 52():147-56. PubMed ID: 26267509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal analysis of a three-dimensional breast model with embedded tumour using the transmission line matrix (TLM) method.
    Amri A; Saidane A; Pulko S
    Comput Biol Med; 2011 Feb; 41(2):76-86. PubMed ID: 21227409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting early breast tumour by finite element thermal analysis.
    Lin QY; Yang HQ; Xie SS; Wang YH; Ye Z; Chen SQ
    J Med Eng Technol; 2009; 33(4):274-80. PubMed ID: 19384702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Imaging - An Emerging Modality for Breast Cancer Detection: A Comprehensive Review.
    Hakim A; Awale RN
    J Med Syst; 2020 Jul; 44(8):136. PubMed ID: 32613403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal detection of embedded tumors using infrared imaging.
    Mital M; Scott EP
    J Biomech Eng; 2007 Feb; 129(1):33-9. PubMed ID: 17227096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor.
    Zhu X; Zhao Z; Wang J; Chen G; Liu QH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1957-66. PubMed ID: 24956614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT).
    Ozen S; Helhel S; Cerezci O
    Burns; 2008 Feb; 34(1):45-9. PubMed ID: 17624675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance near-infrared imaging for breast cancer detection.
    El-Sharkawy YH; El-Sherif AF
    J Biomed Opt; 2014 Jan; 19(1):16018. PubMed ID: 24474504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Framework for estimating tumour parameters using thermal imaging.
    Umadevi V; Raghavan SV; Jaipurkar S
    Indian J Med Res; 2011 Nov; 134(5):725-31. PubMed ID: 22199114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-multistatic MIST beamforming for the early detection of breast cancer.
    O'Halloran M; Jones E; Glavin M
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):830-40. PubMed ID: 19258193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave imaging for early breast cancer detection using a shape-based strategy.
    Irishina N; Moscoso M; Dorn O
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1143-53. PubMed ID: 19174336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories.
    Vadivel A; Surendiran B
    Comput Biol Med; 2013 May; 43(4):259-67. PubMed ID: 23414779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional numerical evaluation of skin surface thermal contrast by application of hypothermia at different depths and sizes of the breast tumor.
    Barros TC; Figueiredo AAA
    Comput Methods Programs Biomed; 2023 Jun; 236():107562. PubMed ID: 37148669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results.
    Schmitt B; Zamecnik P; Zaiss M; Rerich E; Schuster L; Bachert P; Schlemmer HP
    Rofo; 2011 Nov; 183(11):1030-6. PubMed ID: 22034086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical applications of internal heat source analysis for breast cancer identification.
    Han F; Liang CW; Shi GL; Wang L; Li KY
    Genet Mol Res; 2015 Feb; 14(1):1450-60. PubMed ID: 25730084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.