BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26280188)

  • 1. Thermal detection of a prevascular tumor embedded in breast tissue.
    Agyingi E; Wiandt T; Maggelakis SA
    Math Biosci Eng; 2015 Oct; 12(5):907-15. PubMed ID: 26280188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.
    Amri A; Pulko SH; Wilkinson AJ
    Comput Methods Programs Biomed; 2016 Jan; 123():68-80. PubMed ID: 26522612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of forced convection on the skin thermal expression of breast cancer.
    Hu L; Gupta A; Gore JP; Xu LX
    J Biomech Eng; 2004 Apr; 126(2):204-11. PubMed ID: 15179850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and efficient method for breast cancer diagnosis based on infrared thermal imaging.
    Han F; Shi G; Liang C; Wang L; Li K
    Cell Biochem Biophys; 2015 Jan; 71(1):491-8. PubMed ID: 25194831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast - A numerical study.
    Das K; Mishra SC
    J Therm Biol; 2015 Aug; 52():147-56. PubMed ID: 26267509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal analysis of a three-dimensional breast model with embedded tumour using the transmission line matrix (TLM) method.
    Amri A; Saidane A; Pulko S
    Comput Biol Med; 2011 Feb; 41(2):76-86. PubMed ID: 21227409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Phys Med Biol; 2010 Aug; 55(16):4647-59. PubMed ID: 20671356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting early breast tumour by finite element thermal analysis.
    Lin QY; Yang HQ; Xie SS; Wang YH; Ye Z; Chen SQ
    J Med Eng Technol; 2009; 33(4):274-80. PubMed ID: 19384702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Imaging - An Emerging Modality for Breast Cancer Detection: A Comprehensive Review.
    Hakim A; Awale RN
    J Med Syst; 2020 Jul; 44(8):136. PubMed ID: 32613403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal detection of embedded tumors using infrared imaging.
    Mital M; Scott EP
    J Biomech Eng; 2007 Feb; 129(1):33-9. PubMed ID: 17227096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active adjoint modeling method in microwave induced thermoacoustic tomography for breast tumor.
    Zhu X; Zhao Z; Wang J; Chen G; Liu QH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):1957-66. PubMed ID: 24956614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT).
    Ozen S; Helhel S; Cerezci O
    Burns; 2008 Feb; 34(1):45-9. PubMed ID: 17624675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance near-infrared imaging for breast cancer detection.
    El-Sharkawy YH; El-Sherif AF
    J Biomed Opt; 2014 Jan; 19(1):16018. PubMed ID: 24474504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Framework for estimating tumour parameters using thermal imaging.
    Umadevi V; Raghavan SV; Jaipurkar S
    Indian J Med Res; 2011 Nov; 134(5):725-31. PubMed ID: 22199114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-multistatic MIST beamforming for the early detection of breast cancer.
    O'Halloran M; Jones E; Glavin M
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):830-40. PubMed ID: 19258193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave imaging for early breast cancer detection using a shape-based strategy.
    Irishina N; Moscoso M; Dorn O
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1143-53. PubMed ID: 19174336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories.
    Vadivel A; Surendiran B
    Comput Biol Med; 2013 May; 43(4):259-67. PubMed ID: 23414779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional numerical evaluation of skin surface thermal contrast by application of hypothermia at different depths and sizes of the breast tumor.
    Barros TC; Figueiredo AAA
    Comput Methods Programs Biomed; 2023 Jun; 236():107562. PubMed ID: 37148669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results.
    Schmitt B; Zamecnik P; Zaiss M; Rerich E; Schuster L; Bachert P; Schlemmer HP
    Rofo; 2011 Nov; 183(11):1030-6. PubMed ID: 22034086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical applications of internal heat source analysis for breast cancer identification.
    Han F; Liang CW; Shi GL; Wang L; Li KY
    Genet Mol Res; 2015 Feb; 14(1):1450-60. PubMed ID: 25730084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.