BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 26280214)

  • 41. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain.
    Deb SS; Reshamwala SMS; Lali AM
    Biotechnol Lett; 2019 Jul; 41(6-7):823-836. PubMed ID: 31093837
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.
    Jones ME; Fennessey CM; DiChristina TJ; Taillefert M
    Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction.
    Bencheikh-Latmani R; Williams SM; Haucke L; Criddle CS; Wu L; Zhou J; Tebo BM
    Appl Environ Microbiol; 2005 Nov; 71(11):7453-60. PubMed ID: 16269787
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression.
    Li S; Wen J; Jia X
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):577-89. PubMed ID: 21533914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors.
    Beliaev AS; Klingeman DM; Klappenbach JA; Wu L; Romine MF; Tiedje JM; Nealson KH; Fredrickson JK; Zhou J
    J Bacteriol; 2005 Oct; 187(20):7138-45. PubMed ID: 16199584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction and elementary mode analysis of a metabolic model for Shewanella oneidensis MR-1.
    Flynn CM; Hunt KA; Gralnick JA; Srienc F
    Biosystems; 2012 Feb; 107(2):120-8. PubMed ID: 22024451
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic plasticity enables a secondary electron transport pathway in Shewanella oneidensis.
    Schicklberger M; Sturm G; Gescher J
    Appl Environ Microbiol; 2013 Feb; 79(4):1150-9. PubMed ID: 23220953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway.
    Hasegawa S; Jojima T; Suda M; Inui M
    Metab Eng; 2020 May; 59():24-35. PubMed ID: 31926306
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum.
    Lin PP; Mi L; Morioka AH; Yoshino KM; Konishi S; Xu SC; Papanek BA; Riley LA; Guss AM; Liao JC
    Metab Eng; 2015 Sep; 31():44-52. PubMed ID: 26170002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Roles of siderophore in manganese-oxide reduction by Shewanella oneidensis MR-1.
    Kouzuma A; Hashimoto K; Watanabe K
    FEMS Microbiol Lett; 2012 Jan; 326(1):91-8. PubMed ID: 22092340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complex Iron Uptake by the Putrebactin-Mediated and Feo Systems in Shewanella oneidensis.
    Liu L; Li S; Wang S; Dong Z; Gao H
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097446
    [No Abstract]   [Full Text] [Related]  

  • 52. Genome-wide expression links the electron transfer pathway of Shewanella oneidensis to chemotaxis.
    Tai SK; Wu G; Yuan S; Li KC
    BMC Genomics; 2010 May; 11():319. PubMed ID: 20492688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling.
    Tang YJ; Meadows AL; Kirby J; Keasling JD
    J Bacteriol; 2007 Feb; 189(3):894-901. PubMed ID: 17114268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unraveling Biohydrogen Production and Sugar Utilization Systems in the Electricigen
    Kim SH; Kim HJ; Kim SH; Jung HJ; Kim B; Cho DH; Jeon JM; Yoon JJ; Kim SH; Park JH; Bhatia SK; Yang YH
    J Microbiol Biotechnol; 2023 May; 33(5):687-697. PubMed ID: 36823146
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.
    Nakagawa G; Kouzuma A; Hirose A; Kasai T; Yoshida G; Watanabe K
    PLoS One; 2015; 10(9):e0138813. PubMed ID: 26394222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1.
    McLean JS; Pinchuk GE; Geydebrekht OV; Bilskis CL; Zakrajsek BA; Hill EA; Saffarini DA; Romine MF; Gorby YA; Fredrickson JK; Beliaev AS
    Environ Microbiol; 2008 Jul; 10(7):1861-76. PubMed ID: 18412550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CymA and Exogenous Flavins Improve Extracellular Electron Transfer and Couple It to Cell Growth in Mtr-Expressing Escherichia coli.
    Jensen HM; TerAvest MA; Kokish MG; Ajo-Franklin CM
    ACS Synth Biol; 2016 Jul; 5(7):679-88. PubMed ID: 27000939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modular engineering to increase intracellular NAD(H/
    Li F; Li YX; Cao YX; Wang L; Liu CG; Shi L; Song H
    Nat Commun; 2018 Sep; 9(1):3637. PubMed ID: 30194293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of gaseous o-xylene degradation in a microbial fuel cell by adding Shewanella oneidensis MR-1.
    You J; Deng Y; Chen H; Ye J; Zhang S; Zhao J
    Chemosphere; 2020 Aug; 252():126571. PubMed ID: 32224361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.