BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 26280330)

  • 1. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.
    Samineni VK; Yoon J; Crawford KE; Jeong YR; McKenzie KC; Shin G; Xie Z; Sundaram SS; Li Y; Yang MY; Kim J; Wu D; Xue Y; Feng X; Huang Y; Mickle AD; Banks A; Ha JS; Golden JP; Rogers JA; Gereau RW
    Pain; 2017 Nov; 158(11):2108-2116. PubMed ID: 28700536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics.
    Park SI; Shin G; Banks A; McCall JG; Siuda ER; Schmidt MJ; Chung HU; Noh KN; Mun JG; Rhodes J; Bruchas MR; Rogers JA
    J Neural Eng; 2015 Oct; 12(5):056002-56002. PubMed ID: 26193450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote optogenetic control of the enteric nervous system and brain-gut axis in freely-behaving mice enabled by a wireless, battery-free optoelectronic device.
    Efimov AI; Hibberd TJ; Wang Y; Wu M; Zhang K; Ting K; Madhvapathy S; Lee MK; Kim J; Kang J; Riahi M; Zhang H; Travis L; Govier EJ; Yang L; Kelly N; Huang Y; Vázquez-Guardado A; Spencer NJ; Rogers JA
    Biosens Bioelectron; 2024 Aug; 258():116298. PubMed ID: 38701537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds.
    Ausra J; Munger SJ; Azami A; Burton A; Peralta R; Miller JE; Gutruf P
    Nat Commun; 2021 Mar; 12(1):1968. PubMed ID: 33785751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice.
    Grajales-Reyes JG; Copits BA; Lie F; Yu Y; Avila R; Vogt SK; Huang Y; Banks AR; Rogers JA; Gereau RW; Golden JP
    Nat Protoc; 2021 Jun; 16(6):3072-3088. PubMed ID: 34031611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals.
    Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wireless implantable switched-capacitor based optogenetic stimulating system.
    Lee HM; Kwon KY; Li W; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():878-81. PubMed ID: 25570099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation.
    Qazi R; Gomez AM; Castro DC; Zou Z; Sim JY; Xiong Y; Abdo J; Kim CY; Anderson A; Lohner F; Byun SH; Chul Lee B; Jang KI; Xiao J; Bruchas MR; Jeong JW
    Nat Biomed Eng; 2019 Aug; 3(8):655-669. PubMed ID: 31384010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An implantable wireless optogenetic stimulation system for peripheral nerve control.
    Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.
    Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW
    Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wirelessly powered and controlled device for optical neural control of freely-behaving animals.
    Wentz CT; Bernstein JG; Monahan P; Guerra A; Rodriguez A; Boyden ES
    J Neural Eng; 2011 Aug; 8(4):046021. PubMed ID: 21701058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics.
    Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW
    Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wireless multilateral devices for optogenetic studies of individual and social behaviors.
    Yang Y; Wu M; Vázquez-Guardado A; Wegener AJ; Grajales-Reyes JG; Deng Y; Wang T; Avila R; Moreno JA; Minkowicz S; Dumrongprechachan V; Lee J; Zhang S; Legaria AA; Ma Y; Mehta S; Franklin D; Hartman L; Bai W; Han M; Zhao H; Lu W; Yu Y; Sheng X; Banks A; Yu X; Donaldson ZR; Gereau RW; Good CH; Xie Z; Huang Y; Kozorovitskiy Y; Rogers JA
    Nat Neurosci; 2021 Jul; 24(7):1035-1045. PubMed ID: 33972800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord.
    Mondello SE; Pedigo BD; Sunshine MD; Fischedick AE; Horner PJ; Moritz CT
    Exp Neurol; 2021 Jan; 335():113480. PubMed ID: 32991934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.