BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 26280394)

  • 1. Progress towards high-power Li/CFx batteries: electrode architectures using carbon nanotubes with CFx.
    Zhang Q; Takeuchi KJ; Takeuchi ES; Marschilok AC
    Phys Chem Chem Phys; 2015 Sep; 17(35):22504-18. PubMed ID: 26280394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries.
    Chen S; Chen P; Wang Y
    Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes.
    Lu W; Goering A; Qu L; Dai L
    Phys Chem Chem Phys; 2012 Sep; 14(35):12099-104. PubMed ID: 22858720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.
    Jia X; Chen Z; Cui X; Peng Y; Wang X; Wang G; Wei F; Lu Y
    ACS Nano; 2012 Nov; 6(11):9911-9. PubMed ID: 23046380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical architectures of TiO2 nanowires--CNT interpenetrating networks as high-rate anodes for lithium-ion batteries.
    Jin Z; Yang M; Wang G; Wang J; Luan Y; Tan L; Lu Y
    Nanotechnology; 2014 Oct; 25(39):395401. PubMed ID: 25189658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries.
    Wang J; Li L; Wong CL; Madhavi S
    Nanotechnology; 2012 Dec; 23(49):495401. PubMed ID: 23150071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the Role of Electrochemically Formed LiF in Discharge and Aging of Li-CF
    Schoetz T; Robinson LE; Gordon LW; Stariha SA; Harris CE; Seong HL; Jones JP; Brandon EJ; Messinger RJ
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18722-18733. PubMed ID: 38587415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries.
    Li X; Deng S; Banis MN; Doyle-Davis K; Zhang D; Zhang T; Yang J; Divigalpitiya R; Brandys F; Li R; Sun X
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32826-32832. PubMed ID: 31414592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.
    Goyal A; Reddy AL; Ajayan PM
    Small; 2011 Jun; 7(12):1709-13. PubMed ID: 21574248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium-Sulfur Batteries.
    Fang R; Chen K; Yin L; Sun Z; Li F; Cheng HM
    Adv Mater; 2019 Mar; 31(9):e1800863. PubMed ID: 29984484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible copper sulfide @ multi-walled carbon nanotubes cathode for advanced magnesium-lithium-ion batteries.
    Zhang Y; Li Y; Wang Y; Guo R; Liu W; Pei H; Yin G; Ye D; Yu S; Xie J
    J Colloid Interface Sci; 2019 Oct; 553():239-246. PubMed ID: 31207544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvation Structure Tuning Induces LiF/Li
    Li P; Cheng Z; Liu J; Che L; Zhou Y; Xu E; Tian X; Yuan Z
    Small; 2023 Dec; 19(49):e2303149. PubMed ID: 37608448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolyte Engineering Empowers Li||CF
    Xiao Y; Chen X; Jian J; Cheng Y; Zou Y; Su Y; Wu Q; Tang C; Zhang Z; Wang MS; Zheng J; Yang Y
    Small; 2024 Mar; 20(12):e2308472. PubMed ID: 37946668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Ru/CNT Cathode for Rechargeable Solid-State Li-CO
    Savunthari KV; Chen CH; Chen YR; Tong Z; Iputera K; Wang FM; Hsu CC; Wei DH; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44266-44273. PubMed ID: 34494812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward the High-Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ-MnO
    Li L; Wu R; Ma H; Cheng B; Rao S; Lin S; Xu C; Li L; Ding Y; Mai L
    Small; 2023 Jun; 19(26):e2300762. PubMed ID: 36950757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinated carbon as high-performance cathode for aqueous zinc primary batteries.
    Xu C; Zhang L; Liu F; Zhang R; Yue H
    RSC Adv; 2024 Apr; 14(18):12454-12462. PubMed ID: 38633498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.