BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 26280394)

  • 21. Fabrication and Performance of All-Solid-State Li-Air Battery with SWCNTs/LAGP Cathode.
    Liu Y; Li B; Kitaura H; Zhang X; Han M; He P; Zhou H
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17307-10. PubMed ID: 26177186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.
    Sun L; Kong W; Li M; Wu H; Jiang K; Li Q; Zhang Y; Wang J; Fan S
    Nanotechnology; 2016 Feb; 27(7):075401. PubMed ID: 26778739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macroscopic Carbon Nanotube Structures for Lithium Batteries.
    Luo Y; Wang K; Li Q; Fan S; Wang J
    Small; 2020 Apr; 16(15):e1902719. PubMed ID: 31565872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Core-shell structured MnSiO
    Feng J; Li Q; Wang H; Zhang M; Yang X; Yuan R; Chai Y
    Dalton Trans; 2018 Apr; 47(15):5328-5334. PubMed ID: 29589020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode.
    Ma L; Zhuang HL; Wei S; Hendrickson KE; Kim MS; Cohn G; Hennig RG; Archer LA
    ACS Nano; 2016 Jan; 10(1):1050-9. PubMed ID: 26634409
    [TBL] [Abstract][Full Text] [Related]  

  • 28. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage.
    Sathiya M; Prakash AS; Ramesha K; Tarascon JM; Shukla AK
    J Am Chem Soc; 2011 Oct; 133(40):16291-9. PubMed ID: 21888392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion batteries.
    Tang Y; Zhang Y; Deng J; Qi D; Leow WR; Wei J; Yin S; Dong Z; Yazami R; Chen Z; Chen X
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13488-92. PubMed ID: 25168684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of cation-π interactions on the cell voltage of carbon nanotube-based Li batteries.
    Gao S; Shi G; Fang H
    Nanoscale; 2016 Jan; 8(3):1451-5. PubMed ID: 26676257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. V
    Aliahmad N; Liu Y; Xie J; Agarwal M
    ACS Appl Mater Interfaces; 2018 May; 10(19):16490-16499. PubMed ID: 29688002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafine ternary metal oxide particles with carbon nanotubes: a metal-organic-framework-based approach and superior lithium-storage performance.
    Tang X; Liang M; Zhang Y; Sun W; Wang Y
    Dalton Trans; 2019 Mar; 48(13):4413-4419. PubMed ID: 30865194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.
    Choi S; Kim TH; Lee JI; Kim J; Song HK; Park S
    ChemSusChem; 2014 Dec; 7(12):3483-90. PubMed ID: 25333718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Oriented Carbon Nanotube Sheets for Rechargeable Lithium Oxygen Battery Electrodes.
    Ryu S; Kim BG; Choi JW; Lee H
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7611-4. PubMed ID: 26726383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling mechanical energy storage in springs based on carbon nanotubes.
    Hill FA; Havel TF; Livermore C
    Nanotechnology; 2009 Jun; 20(25):255704. PubMed ID: 19491467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SnO2 nanoparticles distributed on multi-walled carbon nanotubes and ball-milled graphite as anode materials of lithium ion batteries.
    Jung DW; Jeong JH; Kim KH; Kong BS; Oh ES
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5435-9. PubMed ID: 22966585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revealing the Mechano-Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High-Power Lithium Primary Batteries.
    Luo Z; Luo S; Yang M; Mao W; Dai C; Pan Y; Wu D; Pan J; Ouyang X
    Small; 2024 Feb; 20(7):e2305980. PubMed ID: 37800615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries.
    Huang H; Zhang W; Li M; Gan Y; Chen J; Kuang Y
    J Colloid Interface Sci; 2005 Apr; 284(2):593-9. PubMed ID: 15780298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.