These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 26280539)
1. Spectral wide-field microscopic fluorescence resonance energy transfer imaging in live cells. Zhang L; Qin G; Chai L; Zhang J; Yang F; Yang H; Xie S; Chen T J Biomed Opt; 2015 Aug; 20(8):86011. PubMed ID: 26280539 [TBL] [Abstract][Full Text] [Related]
2. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement. Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530 [TBL] [Abstract][Full Text] [Related]
3. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells. Chai L; Zhang J; Zhang L; Chen T J Biomed Opt; 2015 Mar; 20(3):037008. PubMed ID: 25793494 [TBL] [Abstract][Full Text] [Related]
4. Improved spectrometer-microscope for quantitative fluorescence resonance energy transfer measurement based on simultaneous spectral unmixing of excitation and emission spectra. Lin F; Du M; Yang F; Wei L; Chen T J Biomed Opt; 2018 Jan; 23(1):1-10. PubMed ID: 29313324 [TBL] [Abstract][Full Text] [Related]
5. Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET. Zhong W; Wu M; Chang CW; Merrick KA; Merajver SD; Mycek MA Opt Express; 2007 Dec; 15(26):18220-35. PubMed ID: 19551120 [TBL] [Abstract][Full Text] [Related]
6. Multichannel wide-field microscopic FRET imaging based on simultaneous spectral unmixing of excitation and emission spectra. Du M; Mai Z; Yang F; Lin F; Wei L; Chen T J Microsc; 2018 Jan; 269(1):66-77. PubMed ID: 28758212 [TBL] [Abstract][Full Text] [Related]
7. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. Neupane B; Ligler FS; Wang G J Biomed Opt; 2014 Aug; 19(8):080901. PubMed ID: 25121478 [TBL] [Abstract][Full Text] [Related]
8. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells. Zhang J; Zhang L; Chai L; Yang F; Du M; Chen T Micron; 2016 Sep; 88():7-15. PubMed ID: 27239984 [TBL] [Abstract][Full Text] [Related]
9. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra. Du M; Zhang L; Xie S; Chen T Opt Express; 2016 Jul; 24(14):16037-51. PubMed ID: 27410873 [TBL] [Abstract][Full Text] [Related]
10. Quantitative FRET measurement based on spectral unmixing of donor, acceptor and spontaneous excitation-emission spectra. Su W; Du M; Lin F; Zhang C; Chen T J Biophotonics; 2019 Apr; 12(4):e201800314. PubMed ID: 30414249 [TBL] [Abstract][Full Text] [Related]
11. Förster resonance energy transfer photoacoustic microscopy. Wang Y; Wang LV J Biomed Opt; 2012 Aug; 17(8):086007. PubMed ID: 23224194 [TBL] [Abstract][Full Text] [Related]
12. Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. Sun Y; Booker CF; Kumari S; Day RN; Davidson M; Periasamy A J Biomed Opt; 2009; 14(5):054009. PubMed ID: 19895111 [TBL] [Abstract][Full Text] [Related]
18. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction. Zhang J; Li H; Chai L; Zhang L; Qu J; Chen T J Microsc; 2015 Feb; 257(2):104-16. PubMed ID: 25354559 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]