BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 26280545)

  • 1. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules.
    Shen C; Zhang G; Wang Q; Meng Q
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19789-97. PubMed ID: 26280545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.
    Shen C; Meng Q; Zhang G
    Biotechnol Bioeng; 2013 Aug; 110(8):2173-83. PubMed ID: 23436440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow fiber culture accelerates differentiation of Caco-2 cells.
    Deng X; Zhang G; Shen C; Yin J; Meng Q
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6943-55. PubMed ID: 23689647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells.
    Sanechika N; Sawada K; Usui Y; Hanai K; Kakuta T; Suzuki H; Kanai G; Fujimura S; Yokoyama TA; Fukagawa M; Terachi T; Saito A
    Nephrol Dial Transplant; 2011 Sep; 26(9):2761-9. PubMed ID: 21421594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes.
    Terryn S; Jouret F; Vandenabeele F; Smolders I; Moreels M; Devuyst O; Steels P; Van Kerkhove E
    Am J Physiol Renal Physiol; 2007 Aug; 293(2):F476-85. PubMed ID: 17475898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topographic Guidance in Melt-Electrowritten Tubular Scaffolds Enhances Engineered Kidney Tubule Performance.
    van Genderen AM; Jansen K; Kristen M; van Duijn J; Li Y; Schuurmans CCL; Malda J; Vermonden T; Jansen J; Masereeuw R; Castilho M
    Front Bioeng Biotechnol; 2020; 8():617364. PubMed ID: 33537294
    [No Abstract]   [Full Text] [Related]  

  • 7. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber.
    Shen C; Zhang G; Meng Q
    Toxicol Appl Pharmacol; 2010 Dec; 249(2):140-7. PubMed ID: 20816885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering.
    Chang KY; Hung LH; Chu IM; Ko CS; Lee YD
    J Biomed Mater Res A; 2010 Feb; 92(2):712-23. PubMed ID: 19274722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering.
    Ngiam M; Liao S; Patil AJ; Cheng Z; Chan CK; Ramakrishna S
    Bone; 2009 Jul; 45(1):4-16. PubMed ID: 19358900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Cell-Paved and -Incorporated Polysaccharide Hollow Fibers Using a Microfluidic Device.
    Iijima K; Ichikawa S; Ishikawa S; Matsukuma D; Yataka Y; Otsuka H; Hashizume M
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5688-5697. PubMed ID: 33405700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures.
    Yeo IS; Oh JE; Jeong L; Lee TS; Lee SJ; Park WH; Min BM
    Biomacromolecules; 2008 Apr; 9(4):1106-16. PubMed ID: 18327908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of renal cells into engineered renal tissues in collagen/Matrigel scaffold in vitro.
    Lü SH; Lin Q; Liu YN; Gao Q; Hao T; Wang Y; Zhou J; Wang H; Du Z; Wu J; Wang CY
    J Tissue Eng Regen Med; 2012 Nov; 6(10):786-92. PubMed ID: 22052853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of LLC-PK(1) cell overgrowth in a bioartificial renal tubule device using a MEK inhibitor, U0126.
    Inagaki M; Yokoyama TA; Sawada K; Duc VM; Kanai G; Lu J; Kakuta T; Saito A
    J Biotechnol; 2007 Oct; 132(1):57-64. PubMed ID: 17884223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip construction of a fully structured scaffold-free vascularized renal tubule.
    Zhu Y; Shi Z; Ding W; Li C
    Biomed Microdevices; 2023 Feb; 25(1):8. PubMed ID: 36826720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration.
    Ahn S; Lee H; Kim G
    Carbohydr Polym; 2013 Oct; 98(1):936-42. PubMed ID: 23987431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioartificial kidney. II. A convective flow model of a hollow fiber bioartificial renal tubule.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):153-9. PubMed ID: 10712731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds.
    Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y
    Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A potential use of collagen-hyaluronan-chondroitin sulfate tri-copolymer scaffold for cartilage tissue engineering].
    Yan J; Liu L; Li X; Wang F; Zhu T; Yuan P; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):130-3. PubMed ID: 16529321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering.
    Gong Z; Xiong H; Long X; Wei L; Li J; Wu Y; Lin Z
    Biomed Mater; 2010 Oct; 5(5):055005. PubMed ID: 20826911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.