These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26280584)

  • 21. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses.
    Li Z; Wang L; Wu J; Xu Y; Wang F; Tang X; Xu J; Ok YS; Meng J; Liu X
    Environ Pollut; 2020 May; 260():114098. PubMed ID: 32041084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remediation of Cd-Contaminated Soil by Modified Nanoscale Zero-Valent Iron: Role of Plant Root Exudates and Inner Mechanisms.
    Huang D; Yang Y; Deng R; Gong X; Zhou W; Chen S; Li B; Wang G
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34070880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sorption of U(VI) onto natural soils and different mineral compositions: The batch method and spectroscopy analysis.
    Shi Y; He J; Yang X; Zhou W; Wang J; Li X; Liu C
    J Environ Radioact; 2019 Jul; 203():163-171. PubMed ID: 30921606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution.
    Lv X; Xue X; Jiang G; Wu D; Sheng T; Zhou H; Xu X
    J Colloid Interface Sci; 2014 Mar; 417():51-9. PubMed ID: 24407658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on influencing factors and mechanism of removal of Cr(VI) from soil suspended liquid by bentonite-supported nanoscale zero-valent iron.
    Liu S; Gao H; Cheng R; Wang Y; Ma X; Peng C; Xie Z
    Sci Rep; 2020 Jun; 10(1):8831. PubMed ID: 32483261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of electrokinetics coupled with a reactive barrier of activated carbon loaded with a nanoscale zero-valent iron for selenite removal from contaminated soils.
    Huang T; Liu L; Zhang S; Xu J
    J Hazard Mater; 2019 Apr; 368():104-114. PubMed ID: 30665105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide.
    Wazne M; Korfiatis GP; Meng X
    Environ Sci Technol; 2003 Aug; 37(16):3619-24. PubMed ID: 12953874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions.
    Liu H; Li M; Chen T; Chen C; Alharbi NS; Hayat T; Chen D; Zhang Q; Sun Y
    Environ Sci Technol; 2017 Aug; 51(16):9227-9234. PubMed ID: 28741938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speciation-dependent microbial reduction of uranium within iron-coated sands.
    Neiss J; Stewart BD; Nico PS; Fendorf S
    Environ Sci Technol; 2007 Nov; 41(21):7343-8. PubMed ID: 18044509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and characterization of waste commercially available polyacrylonitrile fiber-based new composites for efficient removal of uranyl from U(VI)-CO
    Liu J; Shi S; Shu J; Li C; He H; Xiao C; Dong X; He Y; Liao J; Liu N; Lan T
    Sci Total Environ; 2022 May; 822():153507. PubMed ID: 35101504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: The roles of solution chemistry.
    Xie Y; Dong H; Zeng G; Zhang L; Cheng Y; Hou K; Jiang Z; Zhang C; Deng J
    J Hazard Mater; 2017 Sep; 338():306-312. PubMed ID: 28578232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction.
    Zhang Q; Zhao D; Feng S; Wang Y; Jin J; Alsaedi A; Hayat T; Chen C
    J Colloid Interface Sci; 2019 Sep; 552():735-743. PubMed ID: 31176920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface.
    Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA
    Environ Sci Technol; 2012 Apr; 46(7):3811-20. PubMed ID: 22364181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron.
    Hu B; Chen G; Jin C; Hu J; Huang C; Sheng J; Sheng G; Ma J; Huang Y
    J Hazard Mater; 2017 Aug; 336():214-221. PubMed ID: 28494309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The enhancement roles of layered double hydroxide on the reductive immobilization of selenate by nanoscale zero valent iron: Macroscopic and microscopic approaches.
    Hu B; Ye F; Jin C; Ma X; Huang C; Sheng G; Ma J; Wang X; Huang Y
    Chemosphere; 2017 Oct; 184():408-416. PubMed ID: 28609747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. U(VI) adsorption on aquifer sediments at the Hanford Site.
    Um W; Serne RJ; Brown CF; Last GV
    J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles.
    Chang MC; Kang HY
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):576-82. PubMed ID: 19337920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems.
    Xie Y; Cwiertny DM
    Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations.
    Němeček J; Lhotský O; Cajthaml T
    Sci Total Environ; 2014 Jul; 485-486():739-747. PubMed ID: 24369106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles.
    Su H; Fang Z; Tsang PE; Zheng L; Cheng W; Fang J; Zhao D
    J Hazard Mater; 2016 Nov; 318():533-540. PubMed ID: 27469041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.