BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2628094)

  • 21. Regulation of acetoacetyl-CoA in isolated perfused rat hearts.
    Menahan LA; Hron WT
    Eur J Biochem; 1981 Oct; 119(2):295-9. PubMed ID: 7308186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological role of peroxisomal beta-oxidation in liver of fasted rats.
    Ishii H; Horie S; Suga T
    J Biochem; 1980 Jun; 87(6):1855-8. PubMed ID: 6105152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes.
    Grantham BD; Zammit VA
    Biochem J; 1988 Jan; 249(2):409-14. PubMed ID: 3277623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acyl-CoA chain length affects the specificity of various carnitine palmitoyltransferases with respect to carnitine analogues. Possible application in the discrimination of different carnitine palmitoyltransferase activities.
    Murthy MS; Ramsay RR; Pande SV
    Biochem J; 1990 Apr; 267(1):273-6. PubMed ID: 2327985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane.
    Murthy MS; Pande SV
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):378-82. PubMed ID: 3540964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Action in vivo and in vitro of 2-tetradecylglycidic acid, 2-tetradecylglycidyl-CoA and 2-tetradecylglycidylcarnitine on hepatic carnitine palmitoyltransferase.
    Brady PS; Brady LJ
    Biochem J; 1986 Sep; 238(3):801-9. PubMed ID: 3800962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of acyl-CoA availability in interpretation of carnitine palmitoyltransferase I kinetics.
    Pauly DF; McMillin JB
    J Biol Chem; 1988 Dec; 263(34):18160-7. PubMed ID: 3192530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carbonyl-Co-A on mitochondrial oxidations.
    Turnbull DM; Bartlett K; Younan SI; Sherratt HS
    Biochem Pharmacol; 1984 Feb; 33(3):475-81. PubMed ID: 6704164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of clofibrate treatment on acylcarnitine oxidation in isolated rat liver mitochondria.
    Kähönen M
    Med Biol; 1979 Feb; 57(1):58-65. PubMed ID: 35720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative importance of acetate, acetoacetate and D-beta-OH-butyrate in the transport of acetyl CoA from the mitochondria to the cytoplasm for fatty acid synthesis in mice.
    Rous S
    Life Sci; 1976 Mar; 18(6):633-8. PubMed ID: 1263748
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of the mode of addition of acyl-CoA on the initial rate of formation of acylcarnitine in the presence of carnitine by intact rat liver mitochondria in vitro.
    Zammit VA
    Biochem J; 1985 Jul; 229(1):273-5. PubMed ID: 4038262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors influencing palmitoyl-CoA oxidation by rat liver peroxisomal fractions. Substrate concentration, organelle integrity and ATP.
    Thomas J; Debeer LJ; De Schepper PJ; Mannaerts GP
    Biochem J; 1980 Sep; 190(3):485-94. PubMed ID: 7470063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathogenesis of ketonemia.
    Bremer J
    Scand J Clin Lab Invest; 1969 Apr; 23(2):105-8. PubMed ID: 5372441
    [No Abstract]   [Full Text] [Related]  

  • 34. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat.
    McGarry JD; Mills SE; Long CS; Foster DW
    Biochem J; 1983 Jul; 214(1):21-8. PubMed ID: 6615466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of palmitoyl-CoA binding to albumin on the apparent kinetic behavior of carnitine palmitoyltransferase I.
    Richards EW; Hamm MW; Otto DA
    Biochim Biophys Acta; 1991 Jan; 1076(1):23-8. PubMed ID: 1986792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparisons of flux control exerted by mitochondrial outer-membrane carnitine palmitoyltransferase over ketogenesis in hepatocytes and mitochondria isolated from suckling or adult rats.
    New KJ; Krauss S; Elliott KR; Quant PA
    Eur J Biochem; 1999 Feb; 259(3):684-91. PubMed ID: 10092853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation.
    McCormick K; Notar-Francesco VJ; Sriwatanakul K
    Biochem J; 1983 Nov; 216(2):499-502. PubMed ID: 6661211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonhomogeneous labeling of liver mitochondrial acetyl-CoA.
    Des Rosiers C; David F; Garneau M; Brunengraber H
    J Biol Chem; 1991 Jan; 266(3):1574-8. PubMed ID: 1988437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ca2+-mediated action of long-chain acyl-CoA on liver mitochondria energy-linked processes.
    Di Lisa F; Menabò R; Miotto G; Bobyleva-Guarriero V; Siliprandi N
    Biochim Biophys Acta; 1989 Feb; 973(2):185-8. PubMed ID: 2465024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rate-limiting function of 3-hydroxy-3-methylglutaryl-coenzyme A synthase in ketogenesis.
    Dashti N; Ontko JA
    Biochem Med; 1979 Dec; 22(3):365-74. PubMed ID: 93966
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.