These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26281356)
41. Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Luo J; Nishiyama Y; Fuell C; Taguchi G; Elliott K; Hill L; Tanaka Y; Kitayama M; Yamazaki M; Bailey P; Parr A; Michael AJ; Saito K; Martin C Plant J; 2007 May; 50(4):678-95. PubMed ID: 17425720 [TBL] [Abstract][Full Text] [Related]
42. Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Fu R; Zhang P; Jin G; Wang L; Qi S; Cao Y; Martin C; Zhang Y Nat Commun; 2021 Mar; 12(1):1563. PubMed ID: 33692355 [TBL] [Abstract][Full Text] [Related]
43. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.). Landmann C; Hücherig S; Fink B; Hoffmann T; Dittlein D; Coiner HA; Schwab W Planta; 2011 Aug; 234(2):305-20. PubMed ID: 21424826 [TBL] [Abstract][Full Text] [Related]
44. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Fan P; Miller AM; Liu X; Jones AD; Last RL Nat Commun; 2017 Dec; 8(1):2080. PubMed ID: 29234041 [TBL] [Abstract][Full Text] [Related]
45. Role of HXXXD-motif/BAHD acyltransferases in the biosynthesis of extracellular lipids. Molina I; Kosma D Plant Cell Rep; 2015 Apr; 34(4):587-601. PubMed ID: 25510356 [TBL] [Abstract][Full Text] [Related]
47. [Plant-specific type III polyketide synthase superfamily: gene structure, function and metabolites]. Ma L; Shi G; Ye H; Liu B; Wang Y Sheng Wu Gong Cheng Xue Bao; 2010 Nov; 26(11):1482-92. PubMed ID: 21284208 [TBL] [Abstract][Full Text] [Related]
48. Nucleotide substrate recognition by UDP-N-acetylglucosamine acyltransferase (LpxA) in the first step of lipid A biosynthesis. Ulaganathan V; Buetow L; Hunter WN J Mol Biol; 2007 Jun; 369(2):305-12. PubMed ID: 17434525 [TBL] [Abstract][Full Text] [Related]
49. Catalytic function, mechanism, and application of plant acyltransferases. Wang L; Chen K; Zhang M; Ye M; Qiao X Crit Rev Biotechnol; 2022 Feb; 42(1):125-144. PubMed ID: 34151663 [TBL] [Abstract][Full Text] [Related]
50. Substrate promiscuity of acyltransferases contributes to the diversity of hydroxycinnamic acid derivatives in purple coneflower. Fu R; Zhang P; Jin G; Wei S; Chen J; Pei J; Zhang Y Plant J; 2022 May; 110(3):802-813. PubMed ID: 35141962 [TBL] [Abstract][Full Text] [Related]
51. Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Milkowski C; Baumert A; Schmidt D; Nehlin L; Strack D Plant J; 2004 Apr; 38(1):80-92. PubMed ID: 15053762 [TBL] [Abstract][Full Text] [Related]
52. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad. Li JJ; Bugg TD Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134 [TBL] [Abstract][Full Text] [Related]
53. Structural basis for modification of flavonol and naphthol glucoconjugates by Nicotiana tabacum malonyltransferase (NtMaT1). Manjasetty BA; Yu XH; Panjikar S; Taguchi G; Chance MR; Liu CJ Planta; 2012 Sep; 236(3):781-93. PubMed ID: 22610270 [TBL] [Abstract][Full Text] [Related]
54. Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Yu XH; Chen MH; Liu CJ Plant J; 2008 Aug; 55(3):382-96. PubMed ID: 18419782 [TBL] [Abstract][Full Text] [Related]
55. Biochemical and catalytic properties of three recombinant alcohol acyltransferases of melon. sulfur-containing ester formation, regulatory role of CoA-SH in activity, and sequence elements conferring substrate preference. Lucchetta L; Manriquez D; El-Sharkawy I; Flores FB; Sanchez-Bel P; Zouine M; Ginies C; Bouzayen M; Rombaldi C; Pech JC; Latché A J Agric Food Chem; 2007 Jun; 55(13):5213-20. PubMed ID: 17542607 [TBL] [Abstract][Full Text] [Related]
56. Conversion of serine-114 to cysteine-114 and the role of the active site nucleophile in acyl transfer by myristoyl-ACP thioesterase from Vibrio harveyi. Li J; Szittner R; Derewenda ZS; Meighen EA Biochemistry; 1996 Aug; 35(31):9967-73. PubMed ID: 8756458 [TBL] [Abstract][Full Text] [Related]
57. Substrate specificity of an alpha-amino acid ester hydrolase produced by Acetobacter turbidans A.T.C.C. 9325. Takahashi T; Yamazaki Y; Kato K Biochem J; 1974 Mar; 137(3):497-503. PubMed ID: 4424889 [TBL] [Abstract][Full Text] [Related]
58. Genome-wide association identifies a BAHD acyltransferase activity that assembles an ester of glucuronosylglycerol and phenylacetic acid. Simpson JP; Kim CY; Kaur A; Weng JK; Dilkes B; Chapple C Plant J; 2024 Jun; 118(6):2169-2187. PubMed ID: 38558472 [TBL] [Abstract][Full Text] [Related]
59. Enzymatic synthesis of wax esters by cell-free preparations from Sinapis alba L roots. Zimowski J; Paterczyk J; Wojciechowski ZA Acta Biochim Pol; 1982; 29(1-2):27-36. PubMed ID: 7180324 [TBL] [Abstract][Full Text] [Related]
60. Orthology-based analysis helps map evolutionary diversification and predict substrate class use of BAHD acyltransferases. Kruse LH; Weigle AT; Irfan M; Martínez-Gómez J; Chobirko JD; Schaffer JE; Bennett AA; Specht CD; Jez JM; Shukla D; Moghe GD Plant J; 2022 Sep; 111(5):1453-1468. PubMed ID: 35816116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]