These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26281865)

  • 21. Low charge overpotentials in lithium-oxygen batteries based on tetraglyme electrolytes with a limited amount of water.
    Wu S; Tang J; Li F; Liu X; Zhou H
    Chem Commun (Camb); 2015 Dec; 51(94):16860-3. PubMed ID: 26441287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.
    Viswanathan V; Thygesen KS; Hummelshøj JS; Nørskov JK; Girishkumar G; McCloskey BD; Luntz AC
    J Chem Phys; 2011 Dec; 135(21):214704. PubMed ID: 22149808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory.
    Chen LD; Nørskov JK; Luntz AC
    J Phys Chem Lett; 2015 Jan; 6(1):175-9. PubMed ID: 26263108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.
    Ren X; Wang B; Zhu J; Liu J; Zhang W; Wen Z
    Phys Chem Chem Phys; 2015 Jun; 17(22):14605-12. PubMed ID: 25970821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the Oxygen Electrode Open Ratio and Electrolyte Evaporation on the Performance of Li-O
    Mohazabrad F; Wang F; Li X
    ACS Appl Mater Interfaces; 2017 May; 9(18):15459-15469. PubMed ID: 28425703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of Oxygen Reduction in Aprotic Li-O2 Cells: A Model-Based Study.
    Safari M; Adams BD; Nazar LF
    J Phys Chem Lett; 2014 Oct; 5(20):3486-91. PubMed ID: 26278597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unraveling Reaction Mechanisms of Mo
    Yang C; Guo K; Yuan D; Cheng J; Wang B
    J Am Chem Soc; 2020 Apr; 142(15):6983-6990. PubMed ID: 32208692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can Hybrid Na-Air Batteries Outperform Nonaqueous Na-O
    Khan Z; Vagin M; Crispin X
    Adv Sci (Weinh); 2020 Mar; 7(5):1902866. PubMed ID: 32154077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A low-overpotential potassium-oxygen battery based on potassium superoxide.
    Ren X; Wu Y
    J Am Chem Soc; 2013 Feb; 135(8):2923-6. PubMed ID: 23402300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid-free lithium-oxygen batteries.
    Balaish M; Peled E; Golodnitsky D; Ein-Eli Y
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):436-40. PubMed ID: 25283299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic and Kinetic Limitations for Peroxide and Superoxide Formation in Na-O
    Mekonnen YS; Christensen R; Garcia-Lastra JM; Vegge T
    J Phys Chem Lett; 2018 Aug; 9(15):4413-4419. PubMed ID: 30016107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. History effects in lithium-oxygen batteries: how initial seeding influences the discharge capacity.
    Rinaldi A; Wijaya O; Hoster HE; Yu DY
    ChemSusChem; 2014 May; 7(5):1283-8. PubMed ID: 24591297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst.
    Lim HD; Song H; Kim J; Gwon H; Bae Y; Park KY; Hong J; Kim H; Kim T; Kim YH; Lepró X; Ovalle-Robles R; Baughman RH; Kang K
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3926-31. PubMed ID: 24596170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A critical review on lithium-air battery electrolytes.
    Balaish M; Kraytsberg A; Ein-Eli Y
    Phys Chem Chem Phys; 2014 Feb; 16(7):2801-22. PubMed ID: 24424632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide.
    Singh MR; Clark EL; Bell AT
    Phys Chem Chem Phys; 2015 Jul; 17(29):18924-36. PubMed ID: 26103939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2.
    Armstrong AR; Holzapfel M; Novák P; Johnson CS; Kang SH; Thackeray MM; Bruce PG
    J Am Chem Soc; 2006 Jul; 128(26):8694-8. PubMed ID: 16802836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unveiling the charge migration mechanism in Na2O2: implications for sodium-air batteries.
    Araujo RB; Chakraborty S; Ahuja R
    Phys Chem Chem Phys; 2015 Mar; 17(12):8203-9. PubMed ID: 25732774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable synthesis of ordered mesoporous NiFe₂O₄ with tunable pore structure as a bifunctional catalyst for Li-O₂ batteries.
    Li Y; Guo K; Li J; Dong X; Yuan T; Li X; Yang H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20949-57. PubMed ID: 25405827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.