These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26281879)

  • 1. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems.
    Frederick MT; Amin VA; Weiss EA
    J Phys Chem Lett; 2013 Feb; 4(4):634-40. PubMed ID: 26281879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals.
    Frederick MT; Amin VA; Swenson NK; Ho AY; Weiss EA
    Nano Lett; 2013 Jan; 13(1):287-92. PubMed ID: 23244048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Interligand Coupling in Determining the Interfacial Electronic Structure of Colloidal CdS Quantum Dots.
    Harris RD; Amin VA; Lau B; Weiss EA
    ACS Nano; 2016 Jan; 10(1):1395-403. PubMed ID: 26727219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecule to detect and perturb the confinement of charge carriers in quantum dots.
    Frederick MT; Amin VA; Cass LC; Weiss EA
    Nano Lett; 2011 Dec; 11(12):5455-60. PubMed ID: 22032799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals.
    Fischer SA; Crotty AM; Kilina SV; Ivanov SA; Tretiak S
    Nanoscale; 2012 Feb; 4(3):904-14. PubMed ID: 22170563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands.
    Giansante C; Infante I; Fabiano E; Grisorio R; Suranna GP; Gigli G
    J Am Chem Soc; 2015 Feb; 137(5):1875-86. PubMed ID: 25574692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface ligands on optical and electronic spectra of semiconductor nanoclusters.
    Kilina S; Ivanov S; Tretiak S
    J Am Chem Soc; 2009 Jun; 131(22):7717-26. PubMed ID: 19425603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subpicosecond Photoinduced Hole Transfer from a CdS Quantum Dot to a Molecular Acceptor Bound Through an Exciton-Delocalizing Ligand.
    Lian S; Weinberg DJ; Harris RD; Kodaimati MS; Weiss EA
    ACS Nano; 2016 Jun; 10(6):6372-82. PubMed ID: 27281685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description of the Adsorption and Exciton Delocalizing Properties of p-Substituted Thiophenols on CdSe Quantum Dots.
    Aruda KO; Amin VA; Thompson CM; Lau B; Nepomnyashchii AB; Weiss EA
    Langmuir; 2016 Apr; 32(14):3354-64. PubMed ID: 27002248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes.
    Kilina S; Cui P; Fischer SA; Tretiak S
    J Phys Chem Lett; 2014 Oct; 5(20):3565-76. PubMed ID: 26278611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots.
    Kim J; Wong CY; Scholes GD
    Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-Heterocyclic Carbenes as Reversible Exciton-Delocalizing Ligands for Photoluminescent Quantum Dots.
    Westmoreland DE; López-Arteaga R; Weiss EA
    J Am Chem Soc; 2020 Feb; 142(5):2690-2696. PubMed ID: 31934758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size selective excitonic transition energies in strongly confined CdSe quantum dots.
    Thupakula U; Khan AH; Bal JK; Ariga K; Acharya S
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7709-14. PubMed ID: 22097477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Induced Spectral Changes in CdSe Quantum Dots.
    Azpiroz JM; De Angelis F
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19736-45. PubMed ID: 26289823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.