These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26281879)

  • 41. Enhancing light absorption by colloidal metal chalcogenide quantum dots via chalcogenol(ate) surface ligands.
    Giansante C
    Nanoscale; 2019 May; 11(19):9478-9487. PubMed ID: 31045198
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exciton annihilation and dissociation dynamics in group II-V Cd3P2 quantum dots.
    Wu K; Liu Z; Zhu H; Lian T
    J Phys Chem A; 2013 Jul; 117(29):6362-72. PubMed ID: 23611312
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron states in semiconductor quantum dots.
    Dhayal SS; Ramaniah LM; Ruda HE; Nair SV
    J Chem Phys; 2014 Nov; 141(20):204702. PubMed ID: 25429952
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Band Edge Energetics of Heterostructured Nanorods: Photoemission Spectroscopy and Waveguide Spectroelectrochemistry of Au-Tipped CdSe Nanorod Monolayers.
    Ehamparam R; Pavlopoulos NG; Liao MW; Hill LJ; Armstrong NR; Pyun J; Saavedra SS
    ACS Nano; 2015 Sep; 9(9):8786-800. PubMed ID: 26291717
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu
    Nelson HD; Hinterding SOM; Fainblat R; Creutz SE; Li X; Gamelin DR
    J Am Chem Soc; 2017 May; 139(18):6411-6421. PubMed ID: 28421742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of CdSe-AuPd quantum dot 0D/0D hybrid photocatalysts: charge transfer dynamic study with electrochemical analysis for improved photocatalytic activity.
    Panigrahy B; Sahoo PK; Sahoo BB
    Dalton Trans; 2022 Jan; 51(2):664-674. PubMed ID: 34908063
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Energy level modification in lead sulfide quantum dot thin films through ligand exchange.
    Brown PR; Kim D; Lunt RR; Zhao N; Bawendi MG; Grossman JC; Bulović V
    ACS Nano; 2014 Jun; 8(6):5863-72. PubMed ID: 24824726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Core-Shell Formation in Exciton Confinement Relaxation in Dithiocarbamate-Capped CdSe QDs.
    Kaniyankandy S; Verma S
    J Phys Chem Lett; 2017 Jul; 8(14):3228-3233. PubMed ID: 28661145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems.
    Shen J; Song Y; Lee ML; Cha JJ
    Nanotechnology; 2014 Nov; 25(46):465702. PubMed ID: 25354930
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
    Ardelt PL; Gawarecki K; Müller K; Waeber AM; Bechtold A; Oberhofer K; Daniels JM; Klotz F; Bichler M; Kuhn T; Krenner HJ; Machnikowski P; Finley JJ
    Phys Rev Lett; 2016 Feb; 116(7):077401. PubMed ID: 26943557
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory.
    Nienhaus L; Goings JJ; Nguyen D; Wieghold S; Lyding JW; Li X; Gruebele M
    J Am Chem Soc; 2015 Nov; 137(46):14743-50. PubMed ID: 26518039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational insights into CdSe quantum dots' interactions with acetate ligands.
    Tamukong PK; Peiris WD; Kilina S
    Phys Chem Chem Phys; 2016 Jul; 18(30):20499-510. PubMed ID: 27406268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantum confinement controlled solar hydrogen production from hydrogen sulfide using a highly stable CdS(0.5)Se(0.5)/CdSe quantum dot-glass nanosystem.
    Apte SK; Garaje SN; Naik SD; Waichal RP; Baeg JO; Kale BB
    Nanoscale; 2014 Jan; 6(2):908-15. PubMed ID: 24281737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient Modeling of Optical Excitations of Colloidal Core-Shell Semiconductor Quantum Dots by Using Symmetrized Orbitals.
    Cheche TO; Chang YC
    J Phys Chem A; 2018 Dec; 122(51):9910-9921. PubMed ID: 30485085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Understanding the electric field control of the electronic and optical properties of strongly-coupled multi-layered quantum dot molecules.
    Usman M
    Nanoscale; 2015 Oct; 7(39):16516-29. PubMed ID: 26395806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe.
    Wright JT; Forsythe K; Hutchins J; Meulenberg RW
    Nanoscale; 2016 Apr; 8(17):9417-24. PubMed ID: 27093918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical Activity and Excitonic Characteristics of Chiral CdSe Quantum Dots.
    Han P; Du T; Yang X; Zhao Y; Zhou S; Zhao J
    J Phys Chem Lett; 2024 Mar; 15(12):3249-3257. PubMed ID: 38488567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.