These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26281884)

  • 1. Defect-Electron Spreading on the TiO2(110) Semiconductor Surface by Water Adsorption.
    Zhang Z; Cao K; Yates JT
    J Phys Chem Lett; 2013 Feb; 4(4):674-9. PubMed ID: 26281884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-dependent electron-stimulated reactions in water films on TiO2(110).
    Lane CD; Petrik NG; Orlando TM; Kimmel GA
    J Chem Phys; 2007 Dec; 127(22):224706. PubMed ID: 18081413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing water interactions and vacancy production on gadolinia-doped ceria surfaces using electron stimulated desorption.
    Chen H; Aleksandrov A; Chen Y; Zha S; Liu M; Orlando TM
    J Phys Chem B; 2005 Jun; 109(22):11257-62. PubMed ID: 16852374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing defect sites on TiO2 with [Re3(CO)12H3]: spectroscopic characterization of the surface species.
    Suriye K; Lobo-Lapidus RJ; Yeagle GJ; Praserthdam P; Britt RD; Gates BC
    Chemistry; 2008; 14(5):1402-14. PubMed ID: 18188853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions.
    Hahn KR; Tricoli A; Santarossa G; Vargas A; Baiker A
    Langmuir; 2012 Jan; 28(2):1646-56. PubMed ID: 22149350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface chemistry and photochemistry of small molecules on rutile TiO
    Wu L; Wang Z; Xiong F; Sun G; Chai P; Zhang Z; Xu H; Fu C; Huang W
    J Chem Phys; 2020 Jan; 152(4):044702. PubMed ID: 32007048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites.
    Fink K
    Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitive influence of oxygen vacancies for photoactivity on TiO2(110).
    Wang ZT; Deskins NA; Henderson MA; Lyubinetsky I
    Phys Rev Lett; 2012 Dec; 109(26):266103. PubMed ID: 23368587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron-stimulated reactions and O2 production in methanol-covered amorphous solid water films.
    Akin MC; Petrik NG; Kimmel GA
    J Chem Phys; 2009 Mar; 130(10):104710. PubMed ID: 19292552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxide and superoxide states of adsorbed O(2) on anatase TiO(2) (101) with subsurface defects.
    Aschauer U; Chen J; Selloni A
    Phys Chem Chem Phys; 2010 Oct; 12(40):12956-60. PubMed ID: 20820549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2 adsorption on TiO2(101) anatase: a dispersion-corrected density functional theory study.
    Sorescu DC; Al-Saidi WA; Jordan KD
    J Chem Phys; 2011 Sep; 135(12):124701. PubMed ID: 21974546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-stimulated reactions in thin D2O films on Pt(111) mediated by electron trapping.
    Petrik NG; Kimmel GA
    J Chem Phys; 2004 Aug; 121(8):3727-35. PubMed ID: 15303940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals.
    Raghunath P; Huang WF; Lin MC
    J Chem Phys; 2013 Apr; 138(15):154705. PubMed ID: 23614434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticorrelation between surface and subsurface point defects and the impact on the redox chemistry of TiO2(110).
    Yoon Y; Du Y; Garcia JC; Zhu Z; Wang ZT; Petrik NG; Kimmel GA; Dohnalek Z; Henderson MA; Rousseau R; Deskins NA; Lyubinetsky I
    Chemphyschem; 2015 Feb; 16(2):313-21. PubMed ID: 25359161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water adsorption and O-defect formation on Fe
    Ovcharenko R; Voloshina E; Sauer J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25560-25568. PubMed ID: 27722324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of TiO
    Cao Y; Zhou P; Tu Y; Liu Z; Dong BW; Azad A; Ma D; Wang D; Zhang X; Yang Y; Jiang SD; Zhu R; Guo S; Mo F; Ma W
    iScience; 2019 Oct; 20():195-204. PubMed ID: 31581068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic nature of the excess electron distribution at the TiO2(110) surface.
    Krüger P; Jupille J; Bourgeois S; Domenichini B; Verdini A; Floreano L; Morgante A
    Phys Rev Lett; 2012 Mar; 108(12):126803. PubMed ID: 22540610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio studies of hydrogen and acceptor defects in rutile TiO(2).
    Bjørheim TS; Stølen S; Norby T
    Phys Chem Chem Phys; 2010 Jul; 12(25):6817-25. PubMed ID: 20454724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.