These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26281884)

  • 21. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).
    Pan YX; Liu CJ; Mei D; Ge Q
    Langmuir; 2010 Apr; 26(8):5551-8. PubMed ID: 20047326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-induced charge separation in anatase TiO2 particles.
    Berger T; Sterrer M; Diwald O; Knözinger E; Panayotov D; Thompson TL; Yates JT
    J Phys Chem B; 2005 Apr; 109(13):6061-8. PubMed ID: 16851666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of uniform anatase TiO2 nanoparticles by the gel-sol method 2. Adsorption of OH- Ions to Ti(OH)4 gel and TiO2 particles.
    Sugimoto T; Zhou X
    J Colloid Interface Sci; 2002 Aug; 252(2):347-53. PubMed ID: 16290799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The surface states and the electron-hole pair recombination of TiO2 nanopowders].
    Liu BS; He X; Zhao XJ; Zhao QN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):208-12. PubMed ID: 16826888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excited State Dynamics of Ru10 Cluster Interfacing Anatase TiO2(101) Surface and Liquid Water.
    Huang S; Inerbaev TM; Kilin DS
    J Phys Chem Lett; 2014 Aug; 5(16):2823-9. PubMed ID: 26278085
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transition metal atoms pathways on rutile TiO2 (110) surface: distribution of Ti3+ states and evidence of enhanced peripheral charge accumulation.
    Cai Y; Bai Z; Chintalapati S; Zeng Q; Feng YP
    J Chem Phys; 2013 Apr; 138(15):154711. PubMed ID: 23614440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron-mediated CO oxidation on the TiO2(110) surface during electronic excitation.
    Zhang Z; Yates JT
    J Am Chem Soc; 2010 Sep; 132(37):12804-7. PubMed ID: 20806898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron localization determines defect formation on ceria substrates.
    Esch F; Fabris S; Zhou L; Montini T; Africh C; Fornasiero P; Comelli G; Rosei R
    Science; 2005 Jul; 309(5735):752-5. PubMed ID: 16051791
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of and effect of coadsorption on water dissociation on an oxygen vacancy of the MgO(100) surface.
    Wang Y; Nguyen HN; Truong TN
    Chemistry; 2006 Jul; 12(22):5859-67. PubMed ID: 16729339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A theoretical study of water adsorption and decomposition on low-index spinel ZnGa2O4 surfaces: correlation between surface structure and photocatalytic properties.
    Jia C; Fan W; Yang F; Zhao X; Sun H; Li P; Liu L
    Langmuir; 2013 Jun; 29(23):7025-37. PubMed ID: 23682995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110).
    Iwaszuk A; Nolan M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defect-Induced Water Bilayer Growth on Anatase TiO
    Schaefer A; Lanzilotto V; Cappel UB; Uvdal P; Borg A; Sandell A
    Langmuir; 2018 Sep; 34(37):10856-10864. PubMed ID: 30153024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron-induced oxygen desorption from the TiO2(011)-2x1 surface leads to self-organized vacancies.
    Dulub O; Batzilln M; Solovev S; Loginova E; Alchagirov A; Madey TE; Diebold U
    Science; 2007 Aug; 317(5841):1052-6. PubMed ID: 17717178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical Model of Oxidative Adsorption of Water on a Highly Reduced Reconstructed Oxide Surface.
    Koocher NZ; Martirez JM; Rappe AM
    J Phys Chem Lett; 2014 Oct; 5(19):3408-14. PubMed ID: 26278454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile.
    Yan J; Wu G; Guan N; Li L; Li Z; Cao X
    Phys Chem Chem Phys; 2013 Jul; 15(26):10978-88. PubMed ID: 23708180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO2 surface active sites for water splitting.
    Nowotny J; Bak T; Nowotny MK; Sheppard LR
    J Phys Chem B; 2006 Sep; 110(37):18492-5. PubMed ID: 16970476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption, desorption, and displacement kinetics of H2O and CO2 on TiO2(110).
    Smith RS; Li Z; Chen L; Dohnálek Z; Kay BD
    J Phys Chem B; 2014 Jul; 118(28):8054-61. PubMed ID: 24645910
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of CO2 on oxidized, defected, hydrogen and oxygen covered rutile (1 x 1)-TiO2(110).
    Funk S; Burghaus U
    Phys Chem Chem Phys; 2006 Nov; 8(41):4805-13. PubMed ID: 17043725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient and surface site-selective ion desorption by positron annihilation.
    Tachibana T; Yamashita T; Nagira M; Yabuki H; Nagashima Y
    Sci Rep; 2018 May; 8(1):7197. PubMed ID: 29740049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.