BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 26282088)

  • 1. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction-oxidation-hydrolysis.
    Ren X; Wei Q; Chen Y; Guo J; Wei S; Wang X
    J Hazard Mater; 2015 Dec; 299():702-10. PubMed ID: 26282088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.
    Qifeng W; Xiulian R; Jingjing G; Yongxing C
    J Hazard Mater; 2016 Mar; 304():1-9. PubMed ID: 26546698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite.
    Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W
    J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction.
    Zhang L; Li L; Rui H; Shi D; Peng X; Ji L; Song X
    J Hazard Mater; 2020 Nov; 398():122840. PubMed ID: 32516726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of organic phase, fermentation media, and operating conditions on lactic Acid extraction.
    Hossain MM; Maisuria JL
    Biotechnol Prog; 2008; 24(3):757-65. PubMed ID: 18376873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of organic carbon from wastepaper pulp effluent by lab-scale solar photo-Fenton process.
    Xu M; Wang Q; Hao Y
    J Hazard Mater; 2007 Sep; 148(1-2):103-9. PubMed ID: 17367923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent.
    Fang D; Zhang R; Deng W; Li J
    Environ Technol; 2012; 33(13-15):1709-15. PubMed ID: 22988632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO
    Wu Y; Zhou K; Zhang X; Peng C; Jiang Y; Chen W
    Waste Manag; 2022 May; 144():303-312. PubMed ID: 35427902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction.
    Sun L; Zhang C; Chen L; Liu J; Jin H; Xu H; Ding L
    Anal Chim Acta; 2009 Apr; 638(2):162-8. PubMed ID: 19327455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods.
    Raju B; Kumar JR; Lee JY; Kwonc HS; Kantam ML; Reddy BR
    J Hazard Mater; 2012 Aug; 227-228():142-7. PubMed ID: 22664260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithizone modified magnetic nanoparticles for fast and selective solid phase extraction of trace elements in environmental and biological samples prior to their determination by ICP-OES.
    Cheng G; He M; Peng H; Hu B
    Talanta; 2012 Jan; 88():507-15. PubMed ID: 22265534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FePO
    Bahgat NT; Siddiqui A; Wilfert P; Korving L; van Loosdrecht MCM
    Water Res; 2024 Jun; 260():121905. PubMed ID: 38878308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine 308.
    Sahu KK; Agrawal A; Mishra D
    J Environ Manage; 2013 Aug; 125():68-73. PubMed ID: 23644591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable Selective Recovery of Sulfuric Acid and Vanadium from Acidic Wastewater with Two-Step Solvent Extraction.
    Zhu X; Ma C; Li W
    ACS Omega; 2023 Aug; 8(30):27127-27138. PubMed ID: 37546607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES.
    Sereshti H; Heravi YE; Samadi S
    Talanta; 2012 Aug; 97():235-41. PubMed ID: 22841073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336.
    Nayl AA
    J Hazard Mater; 2010 Jan; 173(1-3):223-30. PubMed ID: 19783369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extractive removal of chromium (VI) from industrial waste solution.
    Agrawal A; Pal C; Sahu KK
    J Hazard Mater; 2008 Nov; 159(2-3):458-64. PubMed ID: 18417285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced pH change and its application to solid phase extraction of trace heavy metals by high-magnetization Fe3O4@SiO2@TiO2 nanoparticles followed by inductively coupled plasma mass spectrometry detection.
    Zhang N; Peng H; Hu B
    Talanta; 2012 May; 94():278-83. PubMed ID: 22608448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.