These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26282100)

  • 1. Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy.
    Mazzeo A; Beltramo E; Iavello A; Carpanetto A; Porta M
    Acta Diabetol; 2015 Dec; 52(6):1113-9. PubMed ID: 26282100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro.
    Beltramo E; Lopatina T; Berrone E; Mazzeo A; Iavello A; Camussi G; Porta M
    Acta Diabetol; 2014 Dec; 51(6):1055-64. PubMed ID: 25374383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects.
    Mazzeo A; Beltramo E; Lopatina T; Gai C; Trento M; Porta M
    Exp Eye Res; 2018 Nov; 176():69-77. PubMed ID: 30008390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A human retinal microvascular endothelial-pericyte co-culture model to study diabetic retinopathy in vitro.
    Eyre JJ; Williams RL; Levis HJ
    Exp Eye Res; 2020 Dec; 201():108293. PubMed ID: 33039459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imbalance between pro-apoptotic and pro-survival factors in human retinal pericytes in diabetic-like conditions.
    Beltramo E; Arroba AI; Mazzeo A; Valverde AM; Porta M
    Acta Ophthalmol; 2018 Feb; 96(1):e19-e26. PubMed ID: 28127871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of miR-21-3p, miR-30b-5p and miR-150-5p shuttled by extracellular vesicles from diabetic subjects reveals their association with diabetic retinopathy.
    Mazzeo A; Lopatina T; Gai C; Trento M; Porta M; Beltramo E
    Exp Eye Res; 2019 Jul; 184():56-63. PubMed ID: 31002820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connection of pericyte-angiopoietin-Tie-2 system in diabetic retinopathy: friend or foe?
    Cai J; Ruan Q; Chen ZJ; Han S
    Future Med Chem; 2012 Nov; 4(17):2163-76. PubMed ID: 23190105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adipose mesenchymal stem cells-secreted extracellular vesicles containing microRNA-192 delays diabetic retinopathy by targeting ITGA1.
    Gu C; Zhang H; Gao Y
    J Cell Physiol; 2021 Jul; 236(7):5036-5051. PubMed ID: 33325098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.
    Mendel TA; Clabough EB; Kao DS; Demidova-Rice TN; Durham JT; Zotter BC; Seaman SA; Cronk SM; Rakoczy EP; Katz AJ; Herman IM; Peirce SM; Yates PA
    PLoS One; 2013; 8(5):e65691. PubMed ID: 23741506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Development of Diabetic Retinopathy in Goto-Kakizaki Rat and the Expression of Angiogenesis-Related Signals.
    Gong CY; Lu B; Sheng YC; Yu ZY; Zhou JY; Ji LL
    Chin J Physiol; 2016 Apr; 59(2):100-8. PubMed ID: 27080465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
    Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP
    Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of the pericyte during angiogenesis and its role in cancer and diabetic retinopathy.
    Hall AP
    Toxicol Pathol; 2006; 34(6):763-75. PubMed ID: 17162534
    [No Abstract]   [Full Text] [Related]  

  • 13. A role for VEGF as a negative regulator of pericyte function and vessel maturation.
    Greenberg JI; Shields DJ; Barillas SG; Acevedo LM; Murphy E; Huang J; Scheppke L; Stockmann C; Johnson RS; Angle N; Cheresh DA
    Nature; 2008 Dec; 456(7223):809-13. PubMed ID: 18997771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of thiamine and fenofibrate on high glucose and hypoxia-induced damage in cell models of the inner blood-retinal barrier.
    Mazzeo A; Gai C; Trento M; Porta M; Beltramo E
    Acta Diabetol; 2020 Dec; 57(12):1423-1433. PubMed ID: 32656709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy.
    Cai J; Kehoe O; Smith GM; Hykin P; Boulton ME
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2163-71. PubMed ID: 18436850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Aging and retinal vascular diseases].
    Takagi H
    Nippon Ganka Gakkai Zasshi; 2007 Mar; 111(3):207-30; discussion 231. PubMed ID: 17402563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal capillary pericyte apoptosis in early human diabetic retinopathy.
    Li W; Yanoff M; Liu X; Ye X
    Chin Med J (Engl); 1997 Sep; 110(9):659-63. PubMed ID: 9642318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipose-derived mesenchymal stromal cells reverse high glucose-induced reduction of angiogenesis in human retinal microvascular endothelial cells.
    Fiori A; Hammes HP; Bieback K
    Cytotherapy; 2020 May; 22(5):261-275. PubMed ID: 32247542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pericytes and ocular diseases.
    Motiejūnaite R; Kazlauskas A
    Exp Eye Res; 2008 Feb; 86(2):171-7. PubMed ID: 18078933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiogenic interaction between retinal endothelial cells and pericytes from normal and diabetic rabbits, and phenotypic changes of diabetic cells.
    Morisaki N; Watanabe S; Fukuda K; Saito Y
    Cell Mol Biol (Noisy-le-grand); 1999 Feb; 45(1):67-77. PubMed ID: 10099841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.