BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26282308)

  • 1. Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells.
    de la Fuente MS; Sánchez RS; González-Pedro V; Boix PP; Mhaisalkar SG; Rincón ME; Bisquert J; Mora-Seró I
    J Phys Chem Lett; 2013 May; 4(9):1519-25. PubMed ID: 26282308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
    Huang J; Xu B; Yuan C; Chen H; Sun J; Sun L; Agren H
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18808-15. PubMed ID: 25310596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ZnS
    Zhang L; Rao H; Pan Z; Zhong X
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41415-41423. PubMed ID: 31613581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS layers.
    Wu Q; Hou J; Zhao H; Liu Z; Yue X; Peng S; Cao H
    Dalton Trans; 2018 Feb; 47(7):2214-2221. PubMed ID: 29362750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined post-modification of iodide ligands and wide band gap ZnS in quantum dot sensitized solar cells.
    Niu G; Li N; Wang L; Li W; Qiu Y
    Phys Chem Chem Phys; 2014 Sep; 16(34):18327-32. PubMed ID: 25062425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombination control in high-performance quantum dot-sensitized solar cells with a novel TiO2/ZnS/CdS/ZnS heterostructure.
    Lee YS; Gopi CV; Venkata-Haritha M; Kim HJ
    Dalton Trans; 2016 Aug; 45(32):12914-23. PubMed ID: 27477125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic recombination suppression by an inorganic layer and organic dye molecules in highly photostable quantum dot sensitized solar cells.
    Shen H; Li J; Zhao L; Zhang S; Wang W; Oron D; Lin H
    Phys Chem Chem Phys; 2014 Apr; 16(13):6250-6. PubMed ID: 24569752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control.
    Zhao K; Pan Z; Mora-Seró I; Cánovas E; Wang H; Song Y; Gong X; Wang J; Bonn M; Bisquert J; Zhong X
    J Am Chem Soc; 2015 Apr; 137(16):5602-9. PubMed ID: 25860792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.
    Gopi CV; Venkata-Haritha M; Kim SK; Kim HJ
    Nanoscale; 2015 Aug; 7(29):12552-63. PubMed ID: 26140442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots.
    Lai LH; Protesescu L; Kovalenko MV; Loi MA
    Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency "green" quantum dot solar cells.
    Pan Z; Mora-Seró I; Shen Q; Zhang H; Li Y; Zhao K; Wang J; Zhong X; Bisquert J
    J Am Chem Soc; 2014 Jun; 136(25):9203-10. PubMed ID: 24877600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the synthesized colloidal CuInS
    Liang Z; Chen Y; Zhang R; Zhang K; Ba K; Lin Y; Wang D; Xie T
    Dalton Trans; 2022 Nov; 51(45):17292-17300. PubMed ID: 36317601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency cascade CdS/CdSe quantum dot-sensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles.
    Cheng HM; Huang KY; Lee KM; Yu P; Lin SC; Huang JH; Wu CG; Tang J
    Phys Chem Chem Phys; 2012 Oct; 14(39):13539-48. PubMed ID: 22825982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of ZnO nanowires on fibers for one-dimensional flexible quantum dot-sensitized solar cells.
    Chen H; Zhu L; Liu H; Li W
    Nanotechnology; 2012 Feb; 23(7):075402. PubMed ID: 22261246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.