BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 26282394)

  • 1. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model.
    Zhang Q; Liu LN; Yong Q; Deng JC; Cao WG
    Stem Cell Res Ther; 2015 Aug; 6(1):145. PubMed ID: 26282394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of local transplantation of autologous adipose-derived mesenchymal stem cells on the formation of hyperplastic scar on rabbit ears].
    Chen L; Wang DL; Wei ZR; Wang B; Qi JP; Sun GF
    Zhonghua Shao Shang Za Zhi; 2016 Oct; 32(10):582-587. PubMed ID: 27765088
    [No Abstract]   [Full Text] [Related]  

  • 3. Anti-inflammatory cytokine TSG-6 inhibits hypertrophic scar formation in a rabbit ear model.
    Wang H; Chen Z; Li XJ; Ma L; Tang YL
    Eur J Pharmacol; 2015 Mar; 751():42-9. PubMed ID: 25661977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of mechanical tension on the formation of hypertrophic scars in rabbit ears and transforming growth factor-β
    Cao P; Wang YW; Guan H; Yang YS; Li SH; Chen Y; Zhu C; Wan Y; Ren LY; Yao M
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2022 Dec; 38(12):1162-1169. PubMed ID: 36594147
    [No Abstract]   [Full Text] [Related]  

  • 5. Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway.
    Li Y; Zhang W; Gao J; Liu J; Wang H; Li J; Yang X; He T; Guan H; Zheng Z; Han S; Dong M; Han J; Shi J; Hu D
    Stem Cell Res Ther; 2016 Aug; 7(1):102. PubMed ID: 27484727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of local transplantation of autologous adipose-derived stromal vascular fraction on the hyperplastic scar formation in rabbit ears and the mechanism].
    Deng CL; Li XQ; Liu ZY; Yao YZ; Wei ZR; Wang DL
    Zhonghua Shao Shang Za Zhi; 2018 Aug; 34(8):542-548. PubMed ID: 30157559
    [No Abstract]   [Full Text] [Related]  

  • 7. Histone deacetylase inhibitor reduces hypertrophic scarring in a rabbit ear model.
    Diao JS; Xia WS; Yi CG; Yang Y; Zhang X; Xia W; Shu MG; Wang YM; Gui L; Guo SZ
    Plast Reconstr Surg; 2013 Jul; 132(1):61e-69e. PubMed ID: 23806955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of transplanted adipose derived stem cells on the expressions of α-SMA and DCN in fibroblasts of hypertrophic scar tissues in rabbit ears.
    Chu H; Wang Y; Wang X; Song X; Liu H; Li X
    Exp Ther Med; 2018 Sep; 16(3):1729-1734. PubMed ID: 30186394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of DMSO on a rabbit ear hypertrophic scar model: A controlled randomized experimental study.
    Sari E; Bakar B; Dincel GC; Budak Yildiran FA
    J Plast Reconstr Aesthet Surg; 2017 Apr; 70(4):509-517. PubMed ID: 28216321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatocyte Growth Factor Secreted from Human Adipose-Derived Stem Cells Inhibits Fibrosis in Hypertrophic Scar Fibroblasts.
    Ma J; Yan X; Lin Y; Tan Q
    Curr Mol Med; 2020; 20(7):558-571. PubMed ID: 31903876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Vesicles Derived From Human Adipose-Derived Stem Cell Prevent the Formation of Hypertrophic Scar in a Rabbit Model.
    Zhu YZ; Hu X; Zhang J; Wang ZH; Wu S; Yi YY
    Ann Plast Surg; 2020 May; 84(5):602-607. PubMed ID: 32282497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model.
    Hu CH; Tseng YW; Chiou CY; Lan KC; Chou CH; Tai CS; Huang HD; Hu CW; Liao KH; Chuang SS; Yang JY; Lee OK
    Stem Cell Res Ther; 2019 Aug; 10(1):275. PubMed ID: 31462299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional laser-assisted administration of human umbilical cord mesenchymal stem cells to reduce hypertrophic scars in rabbit ears.
    Zhang H; Wang H; Jiang C; Wang H; Xia Y; Shen D; Xie F; Qi N; Lv K
    Lasers Surg Med; 2022 Apr; 54(4):554-564. PubMed ID: 34962300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of prolyl 4-hydroxylase reduces scar hypertrophy in a rabbit model of cutaneous scarring.
    Kim I; Mogford JE; Witschi C; Nafissi M; Mustoe TA
    Wound Repair Regen; 2003; 11(5):368-72. PubMed ID: 12950641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Angiogenesis in hypertrophic scar of rabbit ears and effect of extracellular protein with metalloprotease and thrombospondin 1 domains on hypertrophic scar].
    Song B; Lu K; Zhang Y; Guo S; Han Y; Ma F; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Jan; 22(1):70-4. PubMed ID: 18361243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Influence of autologous adipose stem cell matrix gel on wound healing and scar hyperplasia of full-thickness skin defects in rabbit ears].
    Li L; Bai N; Fu YJ; Wu C; Zhang YJ; Chen YZ
    Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi; 2023 Feb; 39(2):132-140. PubMed ID: 36878522
    [No Abstract]   [Full Text] [Related]  

  • 17. Fat on sale: role of adipose-derived stem cells as anti-fibrosis agent in regenerative medicine.
    Gupta MK; Ajay AK
    Stem Cell Res Ther; 2015 Dec; 6():233. PubMed ID: 26620570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of rabbit adipose-derived mesenchymal stem cells on the healing of skin deep partial-thickness scald wound of rabbit].
    Yao YM; Yan H; Zhang ZM; Wu CF; Zhang L; Yang BB
    Zhonghua Shao Shang Za Zhi; 2016 Jul; 32(7):402-7. PubMed ID: 27464630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis.
    Xiao Y; Xu D; Song H; Shu F; Wei P; Yang X; Zhong C; Wang X; Müller WE; Zheng Y; Xiao S; Xia Z
    Int J Nanomedicine; 2019; 14():5989-6000. PubMed ID: 31534333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental research of correlation between anatomy structure of rabbit ear and creating hypertrophic scar animal model].
    Zhu GY; Xu B; Cai JL
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2008 May; 24(3):216-9. PubMed ID: 18717359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.