BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 26282459)

  • 1. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells.
    Gavello D; Vandael D; Gosso S; Carbone E; Carabelli V
    J Physiol; 2015 Nov; 593(22):4835-53. PubMed ID: 26282459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low pH
    Guarina L; Vandael DH; Carabelli V; Carbone E
    J Physiol; 2017 Apr; 595(8):2587-2609. PubMed ID: 28026020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Cav1.3 channels reveals the critical role of L-type and BK channel coupling in pacemaking mouse adrenal chromaffin cells.
    Marcantoni A; Vandael DH; Mahapatra S; Carabelli V; Sinnegger-Brauns MJ; Striessnig J; Carbone E
    J Neurosci; 2010 Jan; 30(2):491-504. PubMed ID: 20071512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers.
    Calorio C; Gavello D; Guarina L; Salio C; Sassoè-Pognetto M; Riganti C; Bianchi FT; Hofer NT; Tuluc P; Obermair GJ; Defilippi P; Balzac F; Turco E; Bett GC; Rasmusson RL; Carbone E
    J Physiol; 2019 Mar; 597(6):1705-1733. PubMed ID: 30629744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDE type-4 inhibition increases L-type Ca(2+) currents, action potential firing, and quantal size of exocytosis in mouse chromaffin cells.
    Marcantoni A; Carabelli V; Vandael DH; Comunanza V; Carbone E
    Pflugers Arch; 2009 Mar; 457(5):1093-110. PubMed ID: 18779976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?
    Comunanza V; Marcantoni A; Vandael DH; Mahapatra S; Gavello D; Carabelli V; Carbone E
    Channels (Austin); 2010; 4(6):440-6. PubMed ID: 21084859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells.
    Scott AL; Zhang M; Nurse CA
    J Physiol; 2015 Aug; 593(15):3281-99. PubMed ID: 26095976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices.
    Albiñana E; Segura-Chama P; Baraibar AM; Hernández-Cruz A; Hernández-Guijo JM
    J Neurochem; 2015 May; 133(4):511-21. PubMed ID: 25683177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+) mobilization, tyrosine hydroxylase activity, and signaling mechanisms in cultured porcine adrenal medullary chromaffin cells: effects of leptin.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nanmoku T; Nakai T
    Endocrinology; 2001 Jan; 142(1):290-8. PubMed ID: 11145592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells.
    Vandael DH; Zuccotti A; Striessnig J; Carbone E
    J Neurosci; 2012 Nov; 32(46):16345-59. PubMed ID: 23152617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na
    López-Gil A; Nanclares C; Méndez-López I; Martínez-Ramírez C; de Los Rios C; Padín-Nogueira JF; Montero M; Gandía L; García AG
    J Physiol; 2017 Mar; 595(6):2129-2146. PubMed ID: 27982456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitary control of BK potassium channel function and intrinsic firing properties of adrenal chromaffin cells.
    Lovell PV; McCobb DP
    J Neurosci; 2001 May; 21(10):3429-42. PubMed ID: 11331373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Na
    Lingle CJ; Martinez-Espinosa PL; Guarina L; Carbone E
    Pflugers Arch; 2018 Jan; 470(1):39-52. PubMed ID: 28776261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular Ca(2+)-dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin Cells.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nakai T
    Endocrinology; 2001 Jul; 142(7):3075-86. PubMed ID: 11416030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats.
    Segura-Chama P; López-Bistrain P; Pérez-Armendáriz EM; Jiménez-Pérez N; Millán-Aldaco D; Hernández-Cruz A
    Pflugers Arch; 2015 Nov; 467(11):2307-23. PubMed ID: 25791627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of catecholamine secretion by iron-rich and iron-deprived multiwalled carbon nanotubes in chromaffin cells.
    Gavello D; Fenoglio I; Fubini B; Cesano F; Premoselli F; Renna A; Carbone E; Carabelli V
    Neurotoxicology; 2013 Dec; 39():84-94. PubMed ID: 23999117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute modulation of adrenal chromaffin cell BK channel gating and cell excitability by glucocorticoids.
    Lovell PV; King JT; McCobb DP
    J Neurophysiol; 2004 Jan; 91(1):561-70. PubMed ID: 12904339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells.
    Vandael DH; Marcantoni A; Carbone E
    Curr Mol Pharmacol; 2015; 8(2):149-61. PubMed ID: 25966692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway.
    Kuri BA; Chan SA; Smith CB
    J Neurochem; 2009 Aug; 110(4):1214-25. PubMed ID: 19508428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.