These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 26282552)

  • 21. Systematic study on the sensitivity enhancement in graphene plasmonic sensors based on layer-by-layer self-assembled graphene oxide multilayers and their reduced analogues.
    Chung K; Rani A; Lee JE; Kim JE; Kim Y; Yang H; Kim SO; Kim D; Kim DH
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):144-51. PubMed ID: 25555067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene-based photonic devices for soft hybrid optoelectronic systems.
    Kim JT; Kim J; Choi H; Choi CG; Choi SY
    Nanotechnology; 2012 Aug; 23(34):344005. PubMed ID: 22885955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Graphene Plasmonics in Sensor Applications: A Review.
    Ogawa S; Fukushima S; Shimatani M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32586048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-based nanoprobes for molecular diagnostics.
    Chen S; Li F; Fan C; Song S
    Analyst; 2015 Oct; 140(19):6439-51. PubMed ID: 26274873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid Plasmonic Fiber-Optic Sensors.
    Qi M; Zhang NMY; Li K; Tjin SC; Wei L
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical and sensing properties of 1-pyrenecarboxylic Acid-functionalized graphene films laminated on polydimethylsiloxane membranes.
    An X; Butler TW; Washington M; Nayak SK; Kar S
    ACS Nano; 2011 Feb; 5(2):1003-11. PubMed ID: 21229968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological and chemical sensors based on graphene materials.
    Liu Y; Dong X; Chen P
    Chem Soc Rev; 2012 Mar; 41(6):2283-307. PubMed ID: 22143223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna.
    Ullah Z; Nawi I; Witjaksono G; Tansu N; Khattak MI; Junaid M; Siddiqui MA; Magsi SA
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
    Wang AX; Kong X
    Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.
    Khoury CG; Fales AM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18157-64. PubMed ID: 27347606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light.
    Zhang H; Fan X; Quan X; Chen S; Yu H
    Environ Sci Technol; 2011 Jul; 45(13):5731-6. PubMed ID: 21663048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free-standing one-dimensional plasmonic nanostructures.
    Jiang L; Sun Y; Huo F; Zhang H; Qin L; Li S; Chen X
    Nanoscale; 2012 Jan; 4(1):66-75. PubMed ID: 22113325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensing using localised surface plasmon resonance sensors.
    Szunerits S; Boukherroub R
    Chem Commun (Camb); 2012 Sep; 48(72):8999-9010. PubMed ID: 22806135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays.
    Chau YC; Wang CK; Shen L; Lim CM; Chiang HP; Chao CC; Huang HJ; Lin CT; Kumara NTRN; Voo NY
    Sci Rep; 2017 Dec; 7(1):16817. PubMed ID: 29196641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monolayer Graphene Coupled to a Flexible Plasmonic Nanograting for Ultrasensitive Strain Monitoring.
    Tiefenauer RF; Dalgaty T; Keplinger T; Tian T; Shih CJ; Vörös J; Aramesh M
    Small; 2018 Jul; 14(28):e1801187. PubMed ID: 29882299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunability of hybridized plasmonic waveguide mediated by surface plasmon polaritons.
    Jiang MM; Chen HY; Shan CX; Shen DZ
    Phys Chem Chem Phys; 2014 Aug; 16(30):16233-40. PubMed ID: 24968699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.
    Rodrigo D; Limaj O; Janner D; Etezadi D; García de Abajo FJ; Pruneri V; Altug H
    Science; 2015 Jul; 349(6244):165-8. PubMed ID: 26160941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.