BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 26282755)

  • 1. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.
    Lucisine P; Lecerf A; Danger M; Felten V; Aran D; Auclerc A; Gross EM; Huot H; Morel JL; Muller S; Nahmani J; Maunoury-Danger F
    Sci Total Environ; 2015 Dec; 537():213-24. PubMed ID: 26282755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of birch leaves in heavily polluted industrial barrens: relative importance of leaf quality and site of exposure.
    Kozlov MV; Zvereva EL
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9943-50. PubMed ID: 25663340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shelters of leaf-tying herbivores decompose faster than leaves damaged by free-living insects: Implications for nutrient turnover in polluted habitats.
    Kozlov MV; Zverev V; Zvereva EL
    Sci Total Environ; 2016 Oct; 568():946-951. PubMed ID: 27288287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum.
    Maunoury-Danger F; Felten V; Bojic C; Fraysse F; Cosin Ponce M; Dedourge-Geffard O; Geffard A; Guérold F; Danger M
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11281-11294. PubMed ID: 28624948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAHs in decaying Quercus ilex leaf litter: mutual effects on litter decomposition and PAH dynamics.
    De Nicola F; Baldantoni D; Alfani A
    Chemosphere; 2014 Nov; 114():35-9. PubMed ID: 25113181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Litter breakdown as a tool for assessment of the efficiency of afforestation and ash-aided phytostabilization on metal-contaminated soils functioning in Northern France.
    Leclercq-Dransart J; Santorufo L; Pernin C; Louvel B; Demuynck S; Grumiaux F; Douay F; Leprêtre A
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18579-18595. PubMed ID: 29704176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urbanization-related changes in European aspen (Populus tremula L.): leaf traits and litter decomposition.
    Nikula S; Vapaavuori E; Manninen S
    Environ Pollut; 2010 Jun; 158(6):2132-42. PubMed ID: 20338678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of metal pollution from mining on litter decomposition in streams.
    Run L; Yueting P; Siyuan C; Jiachen S; Yunchao L; Shuiyun Z; Xingjun T
    Environ Pollut; 2022 Mar; 296():118698. PubMed ID: 34929208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological decomposition efficiency in different woodland soils.
    Herlitzius H
    Oecologia; 1983 Mar; 57(1-2):78-97. PubMed ID: 28310160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium pollution alters earthworm activity and thus leaf-litter decomposition and soil properties.
    Liu C; Duan C; Meng X; Yue M; Zhang H; Wang P; Xiao Y; Hou Z; Wang Y; Pan Y
    Environ Pollut; 2020 Dec; 267():115410. PubMed ID: 32866867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of litter chemical complexity during decomposition.
    Wickings K; Grandy AS; Reed SC; Cleveland CC
    Ecol Lett; 2012 Oct; 15(10):1180-8. PubMed ID: 22897741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant-soil feedbacks on free-living nitrogen fixation over geological time.
    Winbourne JB; Houlton BZ
    Ecology; 2018 Nov; 99(11):2496-2505. PubMed ID: 30076606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).
    Monroy S; Menéndez M; Basaguren A; Pérez J; Elosegi A; Pozo J
    Sci Total Environ; 2016 Dec; 573():1450-1459. PubMed ID: 27503627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition.
    Beaumelle L; De Laender F; Eisenhauer N
    Elife; 2020 Jun; 9():. PubMed ID: 32589139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone.
    Bonzom JM; Hättenschwiler S; Lecomte-Pradines C; Chauvet E; Gaschak S; Beaugelin-Seiller K; Della-Vedova C; Dubourg N; Maksimenko A; Garnier-Laplace J; Adam-Guillermin C
    Sci Total Environ; 2016 Aug; 562():596-603. PubMed ID: 27110974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens.
    Tresch S; Frey D; Le Bayon RC; Zanetta A; Rasche F; Fliessbach A; Moretti M
    Sci Total Environ; 2019 Mar; 658():1614-1629. PubMed ID: 30678018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site.
    Van Nevel L; Mertens J; Demey A; De Schrijver A; De Neve S; Tack FM; Verheyen K
    Environ Pollut; 2014 Jun; 189():54-62. PubMed ID: 24631973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.