These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pressure dependence of confined liquid behavior subjected to boundary-driven shear. Heyes DM; Smith ER; Dini D; Spikes HA; Zaki TA J Chem Phys; 2012 Apr; 136(13):134705. PubMed ID: 22482578 [TBL] [Abstract][Full Text] [Related]
3. Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure. Gattinoni C; Heyes DM; Lorenz CD; Dini D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052406. PubMed ID: 24329278 [TBL] [Abstract][Full Text] [Related]
4. Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Priezjev NV; Darhuber AA; Troian SM Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041608. PubMed ID: 15903683 [TBL] [Abstract][Full Text] [Related]
5. Effects of shear flow on the structure and dynamics of ionic liquids in a metallic nanoconfinement. Ntim S; Sulpizi M Phys Chem Chem Phys; 2021 Nov; 23(42):24357-24364. PubMed ID: 34676844 [TBL] [Abstract][Full Text] [Related]
6. Wetting and tribological properties of ionic liquids. Castejón HJ; Wynn TJ; Marcin ZM J Phys Chem B; 2014 Apr; 118(13):3661-8. PubMed ID: 24641326 [TBL] [Abstract][Full Text] [Related]
7. Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces. Niavarani A; Priezjev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041606. PubMed ID: 18517634 [TBL] [Abstract][Full Text] [Related]
8. Rate-dependent slip boundary conditions for simple fluids. Priezjev NV Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051605. PubMed ID: 17677076 [TBL] [Abstract][Full Text] [Related]
9. Shear heating, flow, and friction of confined molecular fluids at high pressure. Ewen JP; Gao H; Müser MH; Dini D Phys Chem Chem Phys; 2019 Mar; 21(10):5813-5823. PubMed ID: 30806390 [TBL] [Abstract][Full Text] [Related]
10. An in situ synchrotron XAS methodology for surface analysis under high temperature, pressure, and shear. Dorgham A; Neville A; Ignatyev K; Mosselmans F; Morina A Rev Sci Instrum; 2017 Jan; 88(1):015101. PubMed ID: 28147643 [TBL] [Abstract][Full Text] [Related]
11. Shear force measurement of the hydrodynamic wall position in molecular dynamics. Herrero C; Omori T; Yamaguchi Y; Joly L J Chem Phys; 2019 Jul; 151(4):041103. PubMed ID: 31370549 [TBL] [Abstract][Full Text] [Related]
12. Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Perkin S; Albrecht T; Klein J Phys Chem Chem Phys; 2010 Feb; 12(6):1243-7. PubMed ID: 20119601 [TBL] [Abstract][Full Text] [Related]
13. Slip divergence of water flow in graphene nanochannels: the role of chirality. Wagemann E; Oyarzua E; Walther JH; Zambrano HA Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288 [TBL] [Abstract][Full Text] [Related]
14. On the shear dilation of polycrystalline lubricant films in boundary lubricated contacts. Xu RG; Xiang Y; Papanikolaou S; Leng Y J Chem Phys; 2020 Mar; 152(10):104708. PubMed ID: 32171213 [TBL] [Abstract][Full Text] [Related]
15. Anomalous interplay of slip, shear and wettability in nanoconfined water. Bakli C; Chakraborty S Nanoscale; 2019 Jun; 11(23):11254-11261. PubMed ID: 31162505 [TBL] [Abstract][Full Text] [Related]
16. Temperature dependence of fluid transport in nanopores. Xu B; Wang B; Park T; Qiao Y; Zhou Q; Chen X J Chem Phys; 2012 May; 136(18):184701. PubMed ID: 22583303 [TBL] [Abstract][Full Text] [Related]
17. Rheology of Water Flows Confined between Multilayer Graphene Walls. Li F; Korotkin IA; Karabasov SA Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511 [TBL] [Abstract][Full Text] [Related]
18. Shear thinning and shear dilatancy of liquid n-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects. Tseng HC; Wu JS; Chang RY J Chem Phys; 2008 Jul; 129(1):014502. PubMed ID: 18624478 [TBL] [Abstract][Full Text] [Related]
19. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness. David A; Fajardo OY; Kornyshev AA; Urbakh M; Bresme F Faraday Discuss; 2017 Jul; 199():279-297. PubMed ID: 28440374 [TBL] [Abstract][Full Text] [Related]
20. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid. Capozza R; Benassi A; Vanossi A; Tosatti E J Chem Phys; 2015 Oct; 143(14):144703. PubMed ID: 26472391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]