These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 26282986)

  • 1. Nanoscale Multilayer Transition-Metal Dichalcogenide Heterostructures: Band Gap Modulation by Interfacial Strain and Spontaneous Polarization.
    Kou L; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 May; 4(10):1730-6. PubMed ID: 26282986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarization and electric field dependence of electronic properties in LaAlO3/SrTiO3 heterostructures.
    Yang X; Su H
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3819-23. PubMed ID: 21932802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation.
    Lu N; Guo H; Wang L; Wu X; Zeng XC
    Nanoscale; 2014 May; 6(9):4566-71. PubMed ID: 24676364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type-I Transition Metal Dichalcogenides Lateral Homojunctions: Layer Thickness and External Electric Field Effects.
    Xia C; Xiong W; Du J; Wang T; Peng Y; Wei Z; Li J; Jia Y
    Small; 2018 May; 14(21):e1800365. PubMed ID: 29683270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications.
    Chen B; Sui S; He F; He C; Cheng HM; Qiao SZ; Hu W; Zhao N
    Chem Soc Rev; 2023 Nov; 52(22):7802-7847. PubMed ID: 37869994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Band alignment and optical features in Janus-MoSeTe/X(OH)
    Vo DD; Vu TV; Hieu NV; Hieu NN; Phuc HV; Binh NTT; Phuong LTT; Idrees M; Amin B; Nguyen CV
    Phys Chem Chem Phys; 2019 Nov; 21(46):25849-25858. PubMed ID: 31735947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Sun Q; Yin N; Han S; Huang B; Jacob T
    Phys Chem Chem Phys; 2015 Nov; 17(43):29380-6. PubMed ID: 26473697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial Growth of Two-Dimensional Metal-Semiconductor Transition-Metal Dichalcogenide Vertical Stacks (VSe
    Zhang Z; Gong Y; Zou X; Liu P; Yang P; Shi J; Zhao L; Zhang Q; Gu L; Zhang Y
    ACS Nano; 2019 Jan; 13(1):885-893. PubMed ID: 30586285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems.
    Dong R; Kuljanishvili I
    J Vac Sci Technol B Nanotechnol Microelectron; 2017 May; 35(3):030803. PubMed ID: 29075580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer In-Plane Heterostructures Based on Transition Metal Dichalcogenides for Advanced Electronics.
    Ogura H; Kawasaki S; Liu Z; Endo T; Maruyama M; Gao Y; Nakanishi Y; Lim HE; Yanagi K; Irisawa T; Ueno K; Okada S; Nagashio K; Miyata Y
    ACS Nano; 2023 Apr; 17(7):6545-6554. PubMed ID: 36847351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Anderson's rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures.
    Xu K; Xu Y; Zhang H; Peng B; Shao H; Ni G; Li J; Yao M; Lu H; Zhu H; Soukoulis CM
    Phys Chem Chem Phys; 2018 Dec; 20(48):30351-30364. PubMed ID: 30488929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric Field and Strain Tuning of 2D Semiconductor van der Waals Heterostructures for Tunnel Field-Effect Transistors.
    Iordanidou K; Mitra R; Shetty N; Lara-Avila S; Dash S; Kubatkin S; Wiktor J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1762-1771. PubMed ID: 36537996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Efficiency Infrared Sensing with Optically Excited Graphene-Transition Metal Dichalcogenide Heterostructures.
    Kakkar S; Majumdar A; Ahmed T; Parappurath A; Gill NK; Watanabe K; Taniguchi T; Ghosh A
    Small; 2022 Aug; 18(31):e2202626. PubMed ID: 35802900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures.
    Wei W; Dai Y; Huang B
    Phys Chem Chem Phys; 2016 Jun; 18(23):15632-8. PubMed ID: 27220413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promising M
    Wen J; Cai Q; Xiong R; Cui Z; Zhang Y; He Z; Liu J; Lin M; Wen C; Wu B; Sa B
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel electronic and optical properties of ultrathin silicene/arsenene heterostructures and electric field effects.
    Shu H; Tong Y; Guo J
    Phys Chem Chem Phys; 2017 Apr; 19(16):10644-10650. PubMed ID: 28397893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying.
    Kutana A; Penev ES; Yakobson BI
    Nanoscale; 2014 Jun; 6(11):5820-5. PubMed ID: 24744083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.