BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26283032)

  • 1. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.
    Bode A; Estévez MG; Varela M; Vilar JA
    Mar Environ Res; 2015 Sep; 110():81-91. PubMed ID: 26283032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical and Seasonal Patterns Control Bacterioplankton Communities at Two Horizontally Coherent Coastal Upwelling Sites off Galicia (NW Spain).
    Hernando-Morales V; Varela MM; Needham DM; Cram J; Fuhrman JA; Teira E
    Microb Ecol; 2018 Nov; 76(4):866-884. PubMed ID: 29675703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period.
    Vidal T; Calado AJ; Moita MT; Cunha MR
    PLoS One; 2017; 12(5):e0177237. PubMed ID: 28472179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term oceanographic and ecological research in the Western English Channel.
    Southward AJ; Langmead O; Hardman-Mountford NJ; Aiken J; Boalch GT; Dando PR; Genner MJ; Joint I; Kendall MA; Halliday NC; Harris RP; Leaper R; Mieszkowska N; Pingree RD; Richardson AJ; Sims DW; Smith T; Walne AW; Hawkins SJ
    Adv Mar Biol; 2005; 47():1-105. PubMed ID: 15596166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a changing phenology (1998-2012).
    González Taboada F; Anadón R
    Glob Chang Biol; 2014 Mar; 20(3):698-712. PubMed ID: 23943398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean.
    Koeller P; Fuentes-Yaco C; Platt T; Sathyendranath S; Richards A; Ouellet P; Orr D; Skúladóttir U; Wieland K; Savard L; Aschan M
    Science; 2009 May; 324(5928):791-3. PubMed ID: 19423827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do phytoplankton communities evolve through a self-regulatory abundance-diversity relationship?
    Roy S
    Biosystems; 2009 Feb; 95(2):160-5. PubMed ID: 18996435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensification and spatial homogenization of coastal upwelling under climate change.
    Wang D; Gouhier TC; Menge BA; Ganguly AR
    Nature; 2015 Feb; 518(7539):390-4. PubMed ID: 25693571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.
    Barton AD; Irwin AJ; Finkel ZV; Stock CA
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2964-9. PubMed ID: 26903635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.
    Martinez E; Antoine D; D'Ortenzio F; Gentili B
    Science; 2009 Nov; 326(5957):1253-6. PubMed ID: 19965473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of diversity in marine phytoplankton.
    Barton AD; Dutkiewicz S; Flierl G; Bragg J; Follows MJ
    Science; 2010 Mar; 327(5972):1509-11. PubMed ID: 20185684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estuary-ocean connectivity: fast physics, slow biology.
    Raimonet M; Cloern JE
    Glob Chang Biol; 2017 Jun; 23(6):2345-2357. PubMed ID: 27801968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years.
    Martinez E; Raitsos DE; Antoine D
    Glob Chang Biol; 2016 Feb; 22(2):604-12. PubMed ID: 26386263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upwelling modulation of functional traits of a dominant planktonic grazer during "warm-acid" El Niño 2015 in a year-round upwelling area of Humboldt Current.
    Aguilera VM; Escribano R; Vargas CA; González MT
    PLoS One; 2019; 14(1):e0209823. PubMed ID: 30640913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phytoplankton distribution in the upwelling areas of the Moroccan Atlantic coast localized between 32°30'N and 24°N].
    Elghrib H; Somoue L; Elkhiati N; Berraho A; Makaoui A; Bourhim N; Salah S; Ettahiri O
    C R Biol; 2012 Aug; 335(8):541-54. PubMed ID: 22938921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonality of primary productivity affects coastal species more than its magnitude.
    Muñiz C; McQuaid CD; Weidberg N
    Sci Total Environ; 2021 Feb; 757():143740. PubMed ID: 33250236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.
    Mills KE; Pershing AJ; Sheehan TF; Mountain D
    Glob Chang Biol; 2013 Oct; 19(10):3046-61. PubMed ID: 23780876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoplankton life strategies, phenological shifts and climate change in the North Atlantic Ocean from 1850 to 2100.
    Kléparski L; Beaugrand G; Edwards M; Ostle C
    Glob Chang Biol; 2023 Jul; 29(13):3833-3849. PubMed ID: 37026559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate variability and Dinophysis acuta blooms in an upwelling system.
    Díaz PA; Ruiz-Villarreal M; Pazos Y; Moita T; Reguera B
    Harmful Algae; 2016 Mar; 53():145-159. PubMed ID: 28073440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.