These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26283108)

  • 1. Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion.
    Hasobe T
    J Phys Chem Lett; 2013 Jun; 4(11):1771-80. PubMed ID: 26283108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular nanoarchitectures for light energy conversion.
    Hasobe T
    Phys Chem Chem Phys; 2010 Jan; 12(1):44-57. PubMed ID: 20024442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo- and electro-functional self-assembled architectures of porphyrins.
    Hasobe T
    Phys Chem Chem Phys; 2012 Dec; 14(46):15975-87. PubMed ID: 23093225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced electron transfer in supramolecular donor-acceptor dyads of Zn corrphycene.
    Fujitsuka M; Shimakoshi H; Tei Y; Noda K; Tojo S; Hisaeda Y; Majima T
    Phys Chem Chem Phys; 2013 Apr; 15(15):5677-83. PubMed ID: 23474749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phthalocyanine-nanocarbon ensembles: from discrete molecular and supramolecular systems to hybrid nanomaterials.
    Bottari G; de la Torre G; Torres T
    Acc Chem Res; 2015 Apr; 48(4):900-10. PubMed ID: 25837299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene.
    Maligaspe E; Tkachenko NV; Subbaiyan NK; Chitta R; Zandler ME; Lemmetyinen H; D'Souza F
    J Phys Chem A; 2009 Jul; 113(30):8478-89. PubMed ID: 19580310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Photofunctional Dendrimers for Solar Energy Conversion.
    Zhang X; Zeng Y; Yu T; Chen J; Yang G; Li Y
    J Phys Chem Lett; 2014 Jul; 5(13):2340-50. PubMed ID: 26279557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters.
    Hasobe T; Kamat PV; Troiani V; Solladié N; Ahn TK; Kim SK; Kim D; Kongkanand A; Kuwabata S; Fukuzumi S
    J Phys Chem B; 2005 Jan; 109(1):19-23. PubMed ID: 16850975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced Processes of Supramolecular Nanoarrays Composed of Porphyrin and Benzo[ghi]perylenetriimide Units through Triple Hydrogen Bonds with One-Dimensional Columnar Phases.
    Sakai H; Ohkubo K; Fukuzumi S; Hasobe T
    Chem Asian J; 2016 Feb; 11(4):613-24. PubMed ID: 26766519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porphyrin-fullerene linked systems as artificial photosynthetic mimics.
    Imahori H
    Org Biomol Chem; 2004 May; 2(10):1425-33. PubMed ID: 15136797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced charge and energy transfer in molecular wires.
    Gilbert M; Albinsson B
    Chem Soc Rev; 2015 Feb; 44(4):845-62. PubMed ID: 25212903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A voyage into the synthesis and photophysics of homo- and heterobinuclear ensembles of phthalocyanines and porphyrins.
    de la Torre G; Bottari G; Sekita M; Hausmann A; Guldi DM; Torres T
    Chem Soc Rev; 2013 Oct; 42(20):8049-105. PubMed ID: 23832123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncovalent Functionalization of Thiopyridyl Porphyrins with Ruthenium Phthalocyanines.
    Lourenço LMO; Hausmann A; Schubert C; Neves MGPMS; Cavaleiro JAS; Torres T; Guldi DM; Tomé JPC
    Chempluschem; 2015 May; 80(5):832-838. PubMed ID: 31973330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing, switching, and catalytic applications.
    D'Souza F; Ito O
    Chem Commun (Camb); 2009 Sep; (33):4913-28. PubMed ID: 19668806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold.
    Endo M; Fujitsuka M; Majima T
    Chemistry; 2007; 13(31):8660-6. PubMed ID: 17849494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient photoinduced electron transfer in a porphyrin tripod-fullerene supramolecular complex via pi-pi interactions in nonpolar media.
    Takai A; Chkounda M; Eggenspiller A; Gros CP; Lachkar M; Barbe JM; Fukuzumi S
    J Am Chem Soc; 2010 Mar; 132(12):4477-89. PubMed ID: 20201539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fullerene-encapsulated porphyrin hexagonal nanorods. An anisotropic donor-acceptor composite for efficient photoinduced electron transfer and light energy conversion.
    Hasobe T; Sandanayaka AS; Wada T; Araki Y
    Chem Commun (Camb); 2008 Aug; (29):3372-4. PubMed ID: 18633493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-supramolecular assemblies constructed from water-soluble bis(calix[5]arenes) with porphyrins and their photoinduced electron transfer properties.
    Guo DS; Chen K; Zhang HQ; Liu Y
    Chem Asian J; 2009 Mar; 4(3):436-45. PubMed ID: 19130446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the efficiency of electron transfer through porphyrin-based molecular wires.
    Winters MU; Dahlstedt E; Blades HE; Wilson CJ; Frampton MJ; Anderson HL; Albinsson B
    J Am Chem Soc; 2007 Apr; 129(14):4291-7. PubMed ID: 17362004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.